
Deep 
Reinforcement 
Learning

Mohit Sewak

Frontiers of Artificial Intelligence



Deep Reinforcement Learning



Mohit Sewak

Deep Reinforcement
Learning
Frontiers of Artificial Intelligence

123



Mohit Sewak
Pune, Maharashtra, India

ISBN 978-981-13-8284-0 ISBN 978-981-13-8285-7 (eBook)
https://doi.org/10.1007/978-981-13-8285-7

© Springer Nature Singapore Pte Ltd. 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-13-8285-7


Preface

Reinforcement Learning has evolved a long way with the enhancements from deep
learning. Recent research efforts into combining deep learning with Reinforcement
Learning have led to the development of some very powerful deep Reinforcement
Learning systems, algorithms, and agents which have already achieved some
extraordinary accomplishment. Not only have such systems surpassed the capa-
bilities of most of the classical and non-deep-learning-based Reinforcement
Learning agents, but have also started outperforming the best of human intelligence
at tasks which were believed to require extreme human intelligence, creativity, and
planning skills. Some of the DQN-based agents consistently beating the best of
human players at the complex game of AlphaGo are very good examples of this.

This book starts with the basics of Reinforcement Learning and explains each
concept using very intuitive and easy to understand examples and applications.
Continuing with similar examples, this book then builds upon to introduce some
cutting-edge researches and advancements that make Reinforcement Learning
outperform many of the other (artificial) intelligent systems. This book aims to not
only equip the readers with just the mathematical understanding of multiple
cutting-edge Reinforcement Learning algorithms, but also prepares them to
implement these and similar advanced Deep Reinforcement Learning agents and
system hands-on in their own domain and application area.

This book starts from the basic building blocks of Reinforcement Learning, then
covers the popular classical DP and classical RL approaches like value and policy
iteration, and then covers some popular traditional Reinforcement Learning algo-
rithms like the TD learning, SARSA, and the Q-Learning. After building this
foundation, this book introduces deep learning and implementation aids for modern
Reinforcement Learning environments and agents. After this, the book starts diving
deeper into the concepts of Deep Reinforcement Learning and covers algorithms
like the deep Q networks, double DQN, dueling DQN, (deep) synchronous

v



actor-critic, (deep) asynchronous advantage actor-critic, and the deep deterministic
policy gradient. Each of the theoretical/mathematical chapters on these concepts is
followed by a chapter on practical coding and implementation of these agents’
grounds-up connecting the concepts to the code.

Pune, India Mohit Sewak

vi Preface



Who This Book Is For?

This book will equally appeal to readers with prior experience in deep learning,
who want to learn new skills in Reinforcement Learning, and to readers who have
been the practitioner of Reinforcement Learning or other automation systems and
who want to scale their knowledge and skills to Deep Reinforcement Learning. By
combining the concepts from deep learning and Reinforcement Learning, we could
come closer to realizing the true potential of ‘general artificial intelligence’.

Besides presenting the mathematical concepts and contemporary research in the
field of Deep Reinforcement Learning, this book also covers algorithms, codes, and
practical implementation aids for both Reinforcement Learning environments and
agents. This book is intended to be a guide and an aid for both the types of readers,
for the ones who are interested in the academic understanding and being abreast
with some of the latest advancements in Deep Reinforcement Learning and also for
the ones who want to implement these advanced agents and systems into their own
fields.

Ranging from application in autonomous vehicles to dynamic scheduling and
management of production process, to intelligent maintenance of critical
machineries, to driving efficiency in utility management, to making automated
systems for health care, to intelligent financial trading and transaction monitoring,
to aiding intelligent customer engagement, and to mitigating high-throughput cyber
threats, the concepts learnt in this book could be applied to multiple fields of
interest.

The code in the book is in Python 3x. The deep learning part of the code uses the
TensorFlow library. Some code also uses the Keras wrapper to TensorFlow. Deep
Reinforcement Learning wrappers like Keras-RL are also demonstrated. This book
expects basic familiarization in Python with object-oriented programming concepts
to enable implementation of distributed and scalable systems.

vii



What This Book Covers?

Chapter 1—Introduction to Reinforcement Learning—covers the basic design of
Reinforcement Learning and explains in detail the concepts like the environment,
actor, state, and rewards, and the challenges in each.

Chapter 2—Mathematical and Algorithmic Understanding of Reinforcement
Learning—builds upon a strong mathematical and algorithmic foundation to
understand the internal functioning in different types of agents.

Chapter 3—Coding the Environment and MDP Solution—illustrates how to
build a custom Reinforcement Learning environment in code over which different
reinforcement agents can train and also implements the value iteration and policy
iteration algorithms over a custom environment.

Chapter 4—Temporal Difference Learning, SARSA, and Q-Learning—covers
the TD learning estimation process and the on-policy SARSA and off-policy
Q-Learning algorithms along with different types of exploration mechanism.

Chapter 5—Q-Learning in Code—implements the Q-Learning algorithm in
Python via the tabular approach using the epsilon-greedy algorithm for behavior
policy.

Chapter 6—Introduction to Deep Learning—introduces the concepts of deep
learning like layer architecture, activation, loss functions, and optimizers for the
MLP-DNN and CNN algorithms.

Chapter 7—Implementation Resources—covers the different types of resources
available to implement, test, and compare cutting-edge deep Reinforcement
Learning models and environments.

Chapter 8—Deep Q Network (DQN), Double DQN, and Dueling DQN—covers
the deep Q networks and its variants the double DQN and the dueling DQN and
how these models surpassed the best of human adversaries’ performance at the
game of AlphaGo.

Chapter 9—Double DQN in Code—covers implementation of a double DQN
with an online active Q network coupled with another offline target Q network with

ix



both networks having customizable deep learning architecture, built using Keras on
TensorFlow.

Chapter 10—Policy-Based Reinforcement Learning Approaches—covers the
basic understanding of policy-based Reinforcement Learning approaches and
explains the policy-gradient mechanism with the reinforce algorithm.

Chapter 11—Actor-Critic Models and the A3C—covers stochastic
policy-gradient-based actor-critic algorithm with its different variants like the one
using ‘advantage’ as a baseline and those that could be implemented in ‘syn-
chronous’ and ‘asynchronous’ distributed parallel architectures.

Chapter 12—A3C in Code—covers the implementation of the asynchronous
variant of the distributed parallel actor-critic mechanism with multiple agents
working simultaneously to update the master’s gradient. The agent algorithm is
implemented using the TensorFlow library, using the libraries’ ‘eager execution’
and model’s ‘sub-classing’ features.

Chapter 13—Deterministic Policy Gradient and the DDPG—covers the deter-
ministic policy-gradient theorem and the algorithm and also explains the
enhancements made to enable the deep learning variant of deep deterministic policy
gradient (DDPG).

Chapter 14—DDPG in Code—covers the implementation of the DDPG algo-
rithm to enable the Reinforcement Learning tasks requiring continuous-action
control and implements it in a very few lines of code using the Keras-RL wrapper
library.

x What This Book Covers?



Contents

1 Introduction to Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . 1
1.1 What Is Artificial Intelligence and How Does Reinforcement

Learning Relate to It? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Understanding the Basic Design of Reinforcement

Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 The Reward and the Challenges in Determining a Good

Reward Function for Reinforcement Learning . . . . . . . . . . . . . . 3
1.3.1 Future Rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.2 Probabilistic/Uncertain Rewards . . . . . . . . . . . . . . . . . 4
1.3.3 Attribution of Rewards to Different Actions Taken

in the Past . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.4 Determining a Good Reward Function . . . . . . . . . . . . . 6
1.3.5 Dealing with Different Types of Reward . . . . . . . . . . . 6
1.3.6 Domain Aspects and Solutions to the Reward

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 The State in Reinforcement Learning . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Let Us Score a Triplet in Tic-Tac-Toe . . . . . . . . . . . . . 8
1.4.2 Let Us Balance a Pole on a Cart (The CartPole

Problem) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.3 Let Us Help Mario Win the Princess . . . . . . . . . . . . . . 11

1.5 The Agent in Reinforcement Learning . . . . . . . . . . . . . . . . . . . 14
1.5.1 The Value Function . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5.2 The Action–Value/Q-Function . . . . . . . . . . . . . . . . . . . 15
1.5.3 Explore Versus Exploit Dilemma . . . . . . . . . . . . . . . . 16
1.5.4 The Policy and the On-Policy and Off-Policy

Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

xi



2 Mathematical and Algorithmic Understanding of Reinforcement
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 The Markov Decision Process (MDP) . . . . . . . . . . . . . . . . . . . 19

2.1.1 MDP Notations in Tuple Format . . . . . . . . . . . . . . . . . 20
2.1.2 MDP—Mathematical Objective . . . . . . . . . . . . . . . . . . 21

2.2 The Bellman Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Bellman Equation for Estimating the Value

Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Bellman Equation for estimating the Action–

Value/Q-function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Dynamic Programming and the Bellman Equation . . . . . . . . . . 24

2.3.1 About Dynamic Programming . . . . . . . . . . . . . . . . . . . 24
2.3.2 Optimality for Application of Dynamic Programming

to Solve Bellman Equation . . . . . . . . . . . . . . . . . . . . . 25
2.4 Value Iteration and Policy Iteration Methods . . . . . . . . . . . . . . 25

2.4.1 Bellman Equation for Optimal Value Function
and Optimal Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.2 Value Iteration and Synchronous and Asynchronous
Update modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.3 Policy Iteration and Policy Evaluation . . . . . . . . . . . . . 27
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Coding the Environment and MDP Solution . . . . . . . . . . . . . . . . . . 29
3.1 The Grid-World Problem Example . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Understanding the Grid-World . . . . . . . . . . . . . . . . . . 29
3.1.2 Permissible State Transitions in Grid-World . . . . . . . . . 30

3.2 Constructing the Environment . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 Inheriting an Environment Class or Building

a Custom Environment Class . . . . . . . . . . . . . . . . . . . 31
3.2.2 Recipes to Build Our Own Custom Environment

Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Platform Requirements and Project Structure for the Code . . . . 34
3.4 Code for Creating the Grid-World Environment . . . . . . . . . . . . 36
3.5 Code for the Value Iteration Approach of Solving

the Grid-World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6 Code for the Policy Iteration Approach of Solving

the Grid-World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Temporal Difference Learning, SARSA, and Q-Learning . . . . . . . . 51
4.1 Challenges with Classical DP . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Model-Based and Model-Free Approaches . . . . . . . . . . . . . . . . 52
4.3 Temporal Difference (TD) Learning . . . . . . . . . . . . . . . . . . . . . 53

xii Contents



4.3.1 Estimation and Control Problems of Reinforcement
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.2 TD (0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.3 TD (k) and Eligibility Trace . . . . . . . . . . . . . . . . . . . . 56

4.4 SARSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.6 Algorithms for Deciding Between the “Explore” and “Exploit”

Probabilities (Bandit Algorithms) . . . . . . . . . . . . . . . . . . . . . . . 60
4.6.1 Epsilon-Greedy (ɛ-Greedy) . . . . . . . . . . . . . . . . . . . . . 60
4.6.2 Time Adaptive “epsilon” Algorithms (e.g., Annealing

ɛ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6.3 Action Adaptive Epsilon Algorithms (e.g., Epsilon

Soft) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6.4 Value Adaptive Epsilon Algorithms (e.g., VDBE

Based ɛ-Greedy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6.5 Which Bandit Algorithm Should We Use? . . . . . . . . . . 62

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Q-Learning in Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1 Project Structure and Dependencies . . . . . . . . . . . . . . . . . . . . . 65
5.2 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.1 Imports and Logging (file Q_Lerning.py) . . . . . . . . . . . 67
5.2.2 Code for the Behavior Policy Class . . . . . . . . . . . . . . . 68
5.2.3 Code for the Q-Learning Agent’s Class . . . . . . . . . . . . 70
5.2.4 Code for Testing the Agent Implementation

(Main Function) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.5 Code for Custom Exceptions (File rl_exceptions.py) . . . 73

5.3 Training Statistics Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Introduction to Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.1 Artificial Neurons—The Building Blocks of Deep Learning . . . 75
6.2 Feed-Forward Deep Neural Networks (DNN) . . . . . . . . . . . . . . 77

6.2.1 Feed-Forward Mechanism in Deep Neural
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Architectural Considerations in Deep Learning . . . . . . . . . . . . . 80
6.3.1 Activation Functions in Deep Learning . . . . . . . . . . . . 80
6.3.2 Loss Functions in Deep Learning . . . . . . . . . . . . . . . . 82
6.3.3 Optimizers in Deep Learning . . . . . . . . . . . . . . . . . . . 83

6.4 Convolutional Neural Networks—Deep Learning
for Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.4.1 Convolutional Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.4.2 Pooling Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.4.3 Flattened and Fully Connected Layers . . . . . . . . . . . . . 86

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Contents xiii



7 Implementation Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.1 You Are not Alone! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 Standardized Training Environments and Platforms . . . . . . . . . . 91

7.2.1 OpenAI Universe and Retro . . . . . . . . . . . . . . . . . . . . 91
7.2.2 OpenAI Gym . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.2.3 DeepMind Lab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.2.4 DeepMind Control Suite . . . . . . . . . . . . . . . . . . . . . . . 92
7.2.5 Project Malmo by Microsoft . . . . . . . . . . . . . . . . . . . . 92
7.2.6 Garage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3 Agent Development and Implementation Libraries . . . . . . . . . . 93
7.3.1 DeepMind’s TRFL . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.3.2 OpenAI Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.3.3 Keras-RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.3.4 Coach (By Nervana Systems) . . . . . . . . . . . . . . . . . . . 94
7.3.5 RLlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8 Deep Q Network (DQN), Double DQN, and Dueling DQN . . . . . . . 95
8.1 General Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.2 An Introduction to “Google Deep Mind” and “AlphaGo” . . . . . 96
8.3 The DQN Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.3.1 Experience Replay . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.3.2 Additional Target Q Network . . . . . . . . . . . . . . . . . . . 103
8.3.3 Clipping Rewards and Penalties . . . . . . . . . . . . . . . . . 103

8.4 Double DQN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.5 Dueling DQN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

9 Double DQN in Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
9.1 Project Structure and Dependencies . . . . . . . . . . . . . . . . . . . . . 109
9.2 Code for the Double DQN Agent (File: DoubleDQN.py) . . . . . 111

9.2.1 Code for the Behavior Policy Class (File:
behavior_policy.py) . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9.2.2 Code for the Experience Replay Memory Class
(File: experience_replay.py) . . . . . . . . . . . . . . . . . . . . 123

9.2.3 Code for the Custom Exceptions Classes
(File: rl_exceptions.py) . . . . . . . . . . . . . . . . . . . . . . . . 125

9.3 Training Statistics Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

10 Policy-Based Reinforcement Learning Approaches . . . . . . . . . . . . . 127
10.1 Introduction to Policy-Based Approaches and Policy

Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
10.2 Broad Difference Between Value-Based and Policy-Based

Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
10.3 Problems with Calculating the Policy Gradient . . . . . . . . . . . . . 132

xiv Contents



10.4 The REINFORCE Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 133
10.4.1 Shortcomings of the REINFORCE Algorithm . . . . . . . 135
10.4.2 Pseudocode for the REINFORCE Algorithm . . . . . . . . 135

10.5 Methods to Reduce Variance in the REINFORCE
Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
10.5.1 Cumulative Future Reward-Based Attribution . . . . . . . 136
10.5.2 Discounted Cumulative Future Rewards . . . . . . . . . . . . 137
10.5.3 REINFORCE with Baseline . . . . . . . . . . . . . . . . . . . . 138

10.6 Choosing a Baseline for the REINFORCE Algorithm . . . . . . . . 139
10.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

11 Actor-Critic Models and the A3C . . . . . . . . . . . . . . . . . . . . . . . . . . 141
11.1 Introduction to Actor-Critic Methods . . . . . . . . . . . . . . . . . . . . 141
11.2 Conceptual Design of the Actor-Critic Method . . . . . . . . . . . . . 143
11.3 Architecture for the Actor-Critic Implementation . . . . . . . . . . . 144

11.3.1 Actor-Critic Method and the (Dueling) DQN . . . . . . . . 146
11.3.2 Advantage Actor-Critic Model Architecture . . . . . . . . . 148

11.4 Asynchronous Advantage Actor-Critic Implementation
(A3C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

11.5 (Synchronous) Advantage Actor-Critic Implementation
(A2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

11.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

12 A3C in Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
12.1 Project Structure and Dependencies . . . . . . . . . . . . . . . . . . . . . 153
12.2 Code (A3C_Master—File: a3c_master.py) . . . . . . . . . . . . . . . . 156

12.2.1 A3C_Worker (File: a3c_worker.py) . . . . . . . . . . . . . . . 160
12.2.2 Actor-Critic (TensorFlow) Model (File:

actorcritic_model.py) . . . . . . . . . . . . . . . . . . . . . . . . . 166
12.2.3 SimpleListBasedMemory (File: experience_replay.

py) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
12.2.4 Custom Exceptions (rl_exceptions.py) . . . . . . . . . . . . . 171

12.3 Training Statistics Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

13 Deterministic Policy Gradient and the DDPG . . . . . . . . . . . . . . . . . 173
13.1 Deterministic Policy Gradient (DPG) . . . . . . . . . . . . . . . . . . . . 173

13.1.1 Advantages of Deterministic Policy Gradient Over
Stochastic Policy Gradient . . . . . . . . . . . . . . . . . . . . . 175

13.1.2 Deterministic Policy Gradient Theorem . . . . . . . . . . . . 176
13.1.3 Off-Policy Deterministic Policy-Gradient-Based

Actor-Critic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
13.2 Deep Deterministic Policy Gradient (DDPG) . . . . . . . . . . . . . . 178

Contents xv



13.2.1 Deep Learning Implementation-Related
Modifications in DDPG . . . . . . . . . . . . . . . . . . . . . . . 179

13.2.2 DDPG Algorithm Pseudo-Code . . . . . . . . . . . . . . . . . . 182
13.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

14 DDPG in Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
14.1 High-Level Wrapper Libraries for Reinforcement Learning . . . . 185
14.2 The Mountain Car Continuous (Gym) Environment . . . . . . . . . 186
14.3 Project Structure and Dependencies . . . . . . . . . . . . . . . . . . . . . 186
14.4 Code (File: ddpg_continout_action.py) . . . . . . . . . . . . . . . . . . . 188
14.5 Agent Playing the “MountainCarContinous-v0”

Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

xvi Contents



About the Author

Mohit Sewak is a Ph.D. scholar in CS&IS (Artificial Intelligence and Cyber
Security) with BITS Pilani - Goa, India, and is also a lecturer on subjects like Artificial
Intelligence, Machine Learning, Deep Learning and NLP for the post-graduate
technical degree program. He holds several patents (USPTO & Worldwide) and
publications in the field of Artificial Intelligence and Machine Learning.

Besides his academic linkages, Mohit is also actively engaged with the industry
and has many accomplishments while leading the research and development initia-
tives of many international AI products. Mohit has been leading the Reinforcement
Learning practice at QiO Technologies, the youngest player in Gartner’s magic
quadrant for Industry 4.0.

In his previous roles, Mohit had led the IBM Watson Commerce in India’s
innovation initiative in cognitive line of feature as Sr. Cognitive Data Scientist. Mohit
had also been the Principal Data Scientist for IBM’s global IoT products like IBM
Predictive Maintenance & Quality. He had also been the advanced analytics architect
for IBM’s SPSS suite in India.

Mohit has over 14 years of very rich experience in researching, architecting and
solutioning with technologies like TensorFlow, Torch, Caffe, Theano, Keras,
Open AI, OpenCV, SpaCy, Gensim, Spark, Kafka, ES, Kubernetes, and Tinkerpop.

xvii



Chapter 1
Introduction to Reinforcement Learning

The Intelligence Behind the AI Agent

Abstract In this chapter, we will discuss what is Reinforcement Learning and its
relationship with Artificial Intelligence. We would then try to go deeper to
understand the basic building blocks of Reinforcement Learning like state, actor,
environment, and the reward, and will try to understand the challenges in each of
the aspect as revealed by using multiple examples so that the intuition is well
established, and we build a solid foundation before going ahead into some
advanced topics. We would also discuss how the agent learns to take the best action
and the policy for learning the same. We will also learn the difference between the
On-Policy and the Off-Policy methods.

1.1 What Is Artificial Intelligence and How Does
Reinforcement Learning Relate to It?

Artificial Intelligence from a marketing perspective of different organizations may
mean a lot of things encompassing systems ranging from conventional analytics, to
more contemporary deep learning and chatbots. But technically the use of Artificial
Intelligence (AI) terminology is restricted to the study and design of “Rational”
agents, which could act “Humanly”. Of the many definitions given by different
researchers and authors of Artificial Intelligence, the criteria for calling an agent an
AI agent is that it should possess ability to demonstrate “thought-process and
reasoning”, “intelligent-behavior”, “success in terms of human performance”, and
“rationality”. This identification should be our guiding factor to identify the mar-
keting jargons from real Artificial Intelligence systems and applications from the
marketing hype.

Among the different Artificial Intelligence agents, Reinforcement Learning
agents are considered to be among the most advanced and very capable of
demonstrating high level of intelligence and rational behavior. A reinforcement
learning agent interacts with its environment. The environment itself could

© Springer Nature Singapore Pte Ltd. 2019
M. Sewak, Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-13-8285-7_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_1&amp;domain=pdf
https://doi.org/10.1007/978-981-13-8285-7_1


demonstrate multiple states. The agent acts upon the environment to change the
environment’s state, thereby also receiving a reward or penalty as determined by the
achieved state and the objective of the agent. This definition may look naïve, but the
concepts empowering it led to the development of a many advanced AI agents to
perform very complex tasks, sometimes even challenging human performance at
specific tasks.

1.2 Understanding the Basic Design of Reinforcement
Learning

The diagram as in Fig 1.1 represents a very basic design of Reinforcement Learning
system with its “learning” and “action” loops. Here an agent as described in the
above introductory definition interacts with its environment to learn to take the best
possible action (at in the above figure) under the given state (St) that the environ-
ment is in at step t. The action of the agent in turn changes the state of the
environment from St to St+1 (as shown in the figure) and generates a reward rt for
the agent. Then the agent takes the best possible action for this new state (St+1),
thereby invoking a reward rt+1 and so on. Over a period of iterations (which are
referred to as experiments during the training process of the agent) the agent tries to
improve upon its decision of which is the “best action” that could be taken in a
given state of the environment using the rewards that it receives during the training
process.

The role of the environment here is thus to present the agent with different
possible/probable states that could exist in the problem that the agent may need to
react to, or a representative subset of the same. To assist the learning process of the
agent, the environment also gives the reward or penalty (a negative reward) cor-
responding to the action decisions taken by the agent in a given state. Thus, the
reward is a function of both the action and the state, and not of the action alone.
Which means that the same action could (and ideally should) receive a different
reward under different states.

Fig. 1.1 Design for a
Reinforcement Learning
system

2 1 Introduction to Reinforcement Learning



1.3 The Reward and the Challenges in Determining
a Good Reward Function for Reinforcement Learning

The role of the agent, as should be obvious from the above discussion, is to take the
action that pays the maximum reward in a given state. But this is not so trivial, as
we will determine in this section.

1.3.1 Future Rewards

The actual reward for a right action taken in a particular state may not be realized
immediately. Imagine a real-life scenario, where you have an option to go out and play
now or to sit and study for your upcoming exams now and play later after the exams.
Playing now may give a small adrenaline rush immediately, which in the terms of
reinforcement learning could be treated as a reward if we consider it a positive out-
come. Whereas studying now may seem boring in the short run (this could theoretically
be also treated as a small penalty depending upon the objective) but probable may pay
off very well in the long run, which may be considered as a bigger reward (for the
actions decision to be taken now) but the reward is realized only in the future.
Figure 1.2 shows an illustration between such present and future sense of rewards.

There are quite some well-established solutions to this problem like using a
discounting-factor to discount the future rewards to present time (like in finance we
discount the future returns/cash flows from different projects to present time to
compare between projects of varying lengths and different time periods of real-
ization of the cash flows) for comparison. We will discuss the solutions using this

Fig. 1.2 Instantaneous versus future rewards

1.3 The Reward and the Challenges in Determining a Good Reward Function … 3



technique later in this book, but for now our objective is to highlight the challenges
pertaining to achieving the parity across rewards of varying quantum coming from
different time/step spans in the future which could be attributed to the action taken
in the present time/step.

1.3.2 Probabilistic/Uncertain Rewards

Another complexity in reinforcement learning is the probabilistic nature of the
rewards or uncertainty in the rewards. Let us take the same example of studying
now for a reward (good marks) later. Suppose we have 10 chapters in the course
and we know that the questions are going to come only from six of these chapters,
but we do not know from which specific six chapters the questions are going to
come, and how much weightage will each of the chosen six chapters will have in
the exams. Let us also assume that in a slot of 3 h that our protagonist could spend
in playing an outdoor game, she could study only any one of the 10 chapters.

So even if we assume that the perceived value of the future reward is worth
studying for instead of playing, we are not sure if we would be spending the present
time studying a particular chapter from which there could be no questions at all.
Even if we consider that the chosen chapter is an important one, we do not know the
specific weightage of the marks of the questions that would come from this chapter.
So the rewards from studying now would not only be realized in the future but
could also be probabilistic or uncertain.

1.3.3 Attribution of Rewards to Different Actions Taken
in the Past

Another important consideration is the attribution of the rewards to the specific
action/s taken in the past. Continuing with the above example, suppose out of the
10 chapters or corresponding 10 slots-to-play, we decide that the protagonist/agent
would randomly pick six instances where she/it would study any one of the 10
chapters (assume chosen randomly) and would play in the remaining four slots. We
make specific choices with the objective being to maximize the sum total of all the
rewards comprising of the small but immediate reward and larger but futuristic and
probabilistic rewards.

Assume that with the choices made the protagonist/agent finally end up scoring
50% in its exam. Further assume that of the six chapters we chose to study for, the
questions came from only four of them with weightages of marks as 5%, 8%, 12%,
and 15%, respectively, and the remaining 50% questions came from the four
chapters that we could not prepare as we decided to go to play instead (yes we were
sort of unlucky). Assume that of the questions that the agent answered (worth

4 1 Introduction to Reinforcement Learning



maximum of 50 marks) it received 40 marks (i.e., a total of 40% of the maximum
achievable 100 marks in the exam).

Now, one solution for attribution of this reward (40% marks) could be that we
divide this reward equally across each of the six slots where the agent decided to
studying instead of playing.

Yet another solution could be that we give as much reward to each specific slot
as the weightage of question that came from the chapter the agent decided to study
for in that slot.

If the agent had not scored universally well across each of the chapters that
came, then yet another solution could have been to reward each slot with the
amount of marks that the agent scored (irrespective of the weightage of the ques-
tions) from what it studied in that particular slot. So this essentially takes into
account both the weightage of marks coming from the chapter that the agent
decided to study in that slot and its demonstrated performance for questions from
that chapter in the exam as well.

Yet another solution could be to treat the reward for the agent as a function of the
percentage of marks that we scored of the questions that came from the chapter we
prepared in that slot. That is, the reward is a function of only our performance on
what we decided to study. Since which chapters are going to come in the exams and
what will be the weightage of each of the chapters that will appear in the exam is
not in the agent’s control so this method could rightly reward the protagonist with
what is in her control. The reward in this approach is completely a function of the
agent’s performance in choosing the subjects that it can deliver the best results if it
devotes the given 3 h in studying it, completely ignoring the total marks achieved in
the exams.

But one problem in all these approaches is that we assume that we do not know
the distribution of question weights from different chapters, and we do not want the
agent to mistakenly learn the weightages just from this single example/experiment
as we understand that these could be random across different experiments.

So should we actually equally divide this reward (40% marks) across all the slots
in which we decided to study instead of going to play? If so, how do we reward the
choice of choosing specific subjects to study where we could have performed better
had we studied them as compared to some other subjects where 3 h of study might
not have added that much incremental value? Another observation could be that
whether there are any specific slots where studying could have been more pro-
ductive than playing, for example, if we alternate across studying and playing,
would a healthy body before each studying slot positively affect our performance in
studies as well?

Any of the above solutions could be correct, and all of them could be suboptimal
solutions could be wrong depending upon the purpose of our training. For example,
if the overall purpose of the training is to score maximum marks in exams, then the
last option which seems to be righteous makes no sense, and instead we should try
to train an agent which scores decently well irrespective of the uncertainty in
chapter/weightage selection. On the contrary, if the purpose is to select the right
chapters pertaining to the strength of the protagonist then the later approach could

1.3 The Reward and the Challenges in Determining a Good Reward Function … 5



be better than some of the former approaches. Yet the simplest approach could be
the first one to have an equal attribution to remove bias from training.

So deciding reward attribution is both an art and a science and would determine
the decisions that the agent finally learns to take in different scenarios. Hence, the
attribution criteria and function should be devised considering the intended
behavior and objective of the agent.

1.3.4 Determining a Good Reward Function

By now you would have understood that the problem of attribution of reward is not
trivial. Not only it is challenging to decide the right attribution from a domain
perspective, but even a slight change in the reward function may force a distinctive
behavior for the agent and the agent may decide to take different actions based on
how we decide to formulate our rewards.

Compare the two examples in the previous section where we use absolute scores
and percentage scores as the reward functions, respectively. The attribution with
respect to which action (slot/chapter selection) receives the reward is unchanged in
these two cases. What differs is the magnitude of reward given or the reward
function formulation. By changing the magnitude of reward, we may differ the
behavior of the agent as well as it is evident from the above example.

1.3.5 Dealing with Different Types of Reward

Beyond the attribution and reward function for the specific scenario we discussed,
there is yet another challenge that we have not observed or discussed so far. How
do we equate two different types of rewards?

We have only one numerical value that we could give as a reward (or penalty—
i.e., a negative value for the reward). Assume even if we were to correctly
standardize/normalize and apply all relevant transformations to correctly fix the
reward formulation and attribution problem, how do we account for the rewards
from our decisions to go to play instead of spending that time studying a particular
chapter in that slot?

Playing could have a different type of reward altogether. If we were to represent
it mathematically, then the rewards could have a different unit and scale. In the
chosen example, may be playing instead of studying helps (pays reward to) to keep
us healthy, may help us attain a good position for our team in the tournaments, etc.
So how do we compare our better health, to the marks we obtained (or for that
matter missed) in our exams? For the sake of simplicity, let us not get into the
details of attributions of the specific hours we played to the improvement of our
overall health in that week/month to answer this question for now, that is, could be
a topic for another research altogether.

6 1 Introduction to Reinforcement Learning



One solution to this problem could be that we device a conversion function
between the health improvements and marks obtained. That is going to challenging!
Not only it may be difficult to arrive at a single conversion system that may be
generic enough to fit the needs of different instances and individuals for whom we
want to train this agent for. Thus, defeating the very purpose of training such a
reinforcement learning system. Also, because such a conversion function could be
mathematically very complex in a real-life scenario and could make the opti-
mization or convergence of the loss function very difficult during training.

Therefore, such challenges of equating different types of rewards fall mainly on
experimentation and domain-focused research with domain expertise and experi-
ence coming into play.

1.3.6 Domain Aspects and Solutions to the Reward Problem

Although the design blueprint as given in Fig. 1.1 looks simple, but from the
discussion in this section, it must be clear that the problem of converting a real-life
problem to a reinforcement learning one itself is very challenging.

As we discussed in the concluding notes of each of these challenges, it must be
clear that the above-stated challenges are more domain-focused challenges than
technology focussed and a better solution to these are likely to come from the
respective researches happening in various domains.

Though in some of the coding problems and examples that we will be visiting,
the readers will get a fair idea of how to get to a descent reward function and
account for different types of rewards, but this book is more focussed toward
understanding the technical/mathematical problems with respect to Reinforcement
Learning, formulating a good environment/states and training the agents; knowl-
edge and techniques that are useful in formulating a reinforcement learning system
irrespective of the chosen application domain.

If these technical, mathematical, and algorithmic challenges look less daunting,
the next section should dispel some doubts. We would just touch the surface of the
remaining challenges in this chapter and would go into greater details of each in
some of the later chapters where we cover specific solutions and techniques to
answer these challenges.

1.4 The State in Reinforcement Learning

The state during training of a Reinforcement Learning represents a context that the
environment presents to the agent to take actions for and then generates a reward for
the action taken in that state context. Such a state at best is a simplified repre-
sentation of the real-world scenario that the agent would be facing in production/
deployment when dealing with real-life uncertainties.

1.3 The Reward and the Challenges in Determining a Good Reward Function … 7



For a Reinforcement Learning agent deployed and subjected to real-life scenario,
the state is represented by all the aspects that the agent could perceive in any form.
Anything that may affect the outcome of the scenario (state achieved and the reward
received upon taking an action in a given state) and could be measured should be
ideally included in the state. Though there could be many other factors that affect
the outcome of the process, but some of these could not be measured or even could
not be known in advance. Until we are not able to either know these factors or
measure them with a certain degree of accuracy we would refer to all these factors
and occurrences as noise henceforth.

When transitioning from a training environment to a test/validation or other
preproduction environments (scenario where the agent still face the real-world
environment, but its actions are sandboxed and not used to change the state in the
real world, for example, a self-driving reinforcement learning agent operating under
controlled environment as opposed to autonomously driving in real-world traffic)
the data would be gathered to continually train the agent and prepare it for any
production deployment. At times when there is too much divergence between
training and pre-production environments, the training states may need to be
reconfigured and some over-simplified assumptions reconsidered so that the states
during training may better represent the real-life conditions. The agents subse-
quently are made to relearn with the new state sequences and rewards from the
training environment before validation reoccurs.

Sometimes the state may be comprised of a stacked matrix of readings from all
the sensors and other inputs that the agent/environment has access to in real time.
But often these manifestations of the state might not be optimal for training an agent
as we will discover later, and then we need to also consider how do we manifest the
state from all the real-time and historic data we have from the inputs, observations,
and previous actions taken.

Let us take some examples to understand the formulation of some states and
thereby also understanding the challenges in these formulations. We would take
examples from some popular games here so that all the readers irrespective of their
domain could relate with the examples and understand the underlying principles.
Next, we take examples from popular games to understand the challenges in state/
observation formation to train the respective agents.

1.4.1 Let Us Score a Triplet in Tic-Tac-Toe

Taking the example of a simple game like tic-tac-toe (Fig. 1.3), our state may be
comprised of a simple matrix of [n, 9] (or [n, 3, 3] for that matter) where n
represents the sequence of events or the experiments. For a given event in the
sequence, the event space would be an array or length [9] or alternatively a matrix
of [1, 9] (or a [3, 3] matrix) where each cell of the array/matrix denotes one cell in

8 1 Introduction to Reinforcement Learning



the real-life tic-tac-toe problem, and value of the cell could be a 0 if it is vacant, 1 if
there is a “x” in it, and 2 if there is a “o” in it. This simple representation should
suffice for the agent to learn the strategies corresponding to the side (“x” or “o”) that
we want to train it for with adequate number of sample experiments (episodes) in
hand.

It does not matter if the state (event space) is [1, 9] or a [3, 3] matrix till each cell
uniquely represents the value in a real-life tic-tac-toe, and the previous sequence of
the events also does not makes any difference. All that matters is the values (0, 1, or
2) in each of the nine cells of our matrix, and our agent should be able to learn the
best strategy given the reward for different actions from this state. The output from
such an agent would be the action corresponding to location of the cell which it
wants to play in (if it is vacant). The action from the agent will determine and lead
to the next state which is similar to the previous one, except for that one vacant cell
(value 0) being now taken over by our agent. If the agent wins, it receives the
reward, else the subsequent state is presented to the human or the adversary agent to
play. On the human’s/adversary’s valid turn the resulting state is served back to our
agent again for action and the process continues till there is a winner or no
remaining vacant cells to play.

We took this simple example just to get the readers started in conceptualizing
how we will be converting a real-life scenario and observations into mathematical
notation and computer science data structures which would make sense to our agent
and the agent could be trained well provided the data is exhaustive and represents
adequate coverage of all important scenarios in real life through our chosen for-
mulation of the state. Next, we will take slightly more advanced examples to
uncover some challenges in the state formulation.

Fig. 1.3 The tic-tac-toe game

1.4 The State in Reinforcement Learning 9



1.4.2 Let Us Balance a Pole on a Cart (The CartPole
Problem)

This is a typical beginner’s problem in Reinforcement Learning, and in this
problem we have a straight pole fixed to a cart. We need to balance the pole such
that it does not fall. We could achieve this by moving the cart forward (say indi-
cated by an output of +1) or backward (output of −1), or remaining stationary (a 0
output). There could be implementations where you could either move the cart by
only a specific amount in either direction (± a constant say 1) in a single turn, while
in other implementations we could also adjust the speed (a number from a con-
tinuous range of +v to −v in each unit time step) making it slightly more complex.

Though these changes relates more to the agent’s action, but this will also
influence how you should formulate your state such that the agent could take a
well-informed action. Some implementations in the discrete variety could also give
an option to stay there (−1 to go back, 0 to stay, and +1 to go forward), while others
would have a binary action (0 to go back and 1 to go forward) such that a static
equilibrium is not allowed. Figure 1.4 illustrates a typical cart-pole example where
the pole appears balanced on a cart, which could move horizontally on a line.

Though prima facie this may look to be a complex problem mainly because as
humans we are not so good in cognitively determining the angles and speeds that
may result in balancing the pole, for the agent these might not be as difficult if we
get the state formulation correct.

Also, it may appear that the balancing of the pole may require a lot of under-
standing of physics, gravity, momentum, and angular velocities that need to be fed
into the system, but these details are what we will leave on the agent to learn on its
own (directly or indirectly), and here we will just code the state as we observe it and
feed into the environment. What we observe is just the angle of the pole from the
cart which lies between −90° (pole fell flat in anticlockwise direction) and +90°
(pole fell flat in clockwise direction), where 0° represents a perfectly centered pole.

Fig. 1.4 The CartPole
problem

10 1 Introduction to Reinforcement Learning



1.4.2.1 State Enhancements for a Continuous-Action Agent
for the CartPole Balancing Problem

The information above should be sufficient for training a discrete-action agent
where some hunting is acceptable. But for a continuous-action agent or where an
objective is also to minimize hunting more information to account for angular
velocity could be required. In most of the cases, the system may not have a direct
input for angular velocity, but as we stated that we would leave the math and
physics for our agent to learn, and we could use a simple representation of some
form with which the agent could learn these details.

The simplest representation in this example to include the information on
angular velocity could be the position (in angles as described earlier) of the pole a
unit time prior to the current time step (a millisecond or whatever unit makes sense
from a responsiveness-hunting balance perspective). If this unit time is also the time
between turns that we allow agent to react to (generate the speed direction rec-
ommendations as actions) then this additional input is exactly our previous state
itself. Remember that the only state we were giving as input in the previous
example was the angular position of pole in this previous time step (or previous
state if the step difference is the same as state difference). So essentially we sim-
plified the problem of including the angular velocity (besides angular position) and
other related complexities to just sending two consecutive states (instead of just the
current state/angular position) to train a continuous-action agent (as opposed to a
discrete-action agent).

As we discovered in this example, to make things simple yet effective, we may
use some representations of the real world that are easier to capture and use to
formulate the state for our Reinforcement Learning agent; and the agent, with the
right models/algorithms and sufficient training experiments might be better placed
to learn the complex interacting mechanisms to indirectly learn the right physics
that affects the outcome. Under these conditions, the state might not be a direct
conversion of the real-time observations that we observe/receive (unlike as we did
in the tic-tac-toe example), but may require some ingenuity to make the problem
simple, yet effective. This approach may have a great effect on the accuracies and
efficiencies for the agent as well.

Now let us take the complexity of the state formulation a bit higher so that we
could better understand the challenges in this area.

1.4.3 Let Us Help Mario Win the Princess

1.4.3.1 A Quick Intro to the Vision-Related Reinforcement Learning
Problems

Until now, we have discussed examples in which the data was structured (numeric),
and either directly obtained or perceived through a digital sensor. But if we were to

1.4 The State in Reinforcement Learning 11



employ the Reinforcement Learning agent into jobs that human do, it is
quintessential that the agent could consume all the form of inputs that we humans
do. One major and very complex source of data acquisition for humans is our
vision. Imagine the challenges that a self-driving or autonomous cars need to
undertake. If we want our agents to overcome these challenges, and yet drive safely
for both their own passengers and other people/cars on the road, the digital (nu-
meric) sensor based inputs may not be sufficient and we may also require multitude
of optical sensors (cameras) and high processing power systems to process the
images coming from these optical sensors in real time for our agents to process and
take action. The agents themselves need very high computational power and effi-
cient models to make sense of these sources of data.

1.4.3.2 About the Mario Game

Since we want to keep this section domain neutral, we would continue with our
theme of taking popular games as example domains for this discussion. We would
in this section take the example of the popular game Mario, where our hero needs to
rescue (and win) the princess while crossing many obstacles, tunneling and jumping
around his way, while evading or killing many creatures, and fighting with the
dragon; may be optionally also collecting some coins for their wedding celebra-
tions. All these activities are rewarded in the game, and though the primary reward
is crossing as many levels as possible within three lives (could be augmented
through gathering 1-ups or crossing certain score thresholds in the game), the
secondary reward is the total score being accumulated across these activities. Since
the game already has a weighing scheme to convert the different activities (like
smashing or evading creatures, completing a round within a given time, etc.) into
scores/points, we are not bothered with this specific challenge here (Fig. 1.5).

1.4.3.3 The Vision Challenge While Playing Graphical Games

Assuming that we do not have an API hook to abstract the information in this game
such as where the coins are, what creature is in front of us and at how much
distance it is, what are the topological assets (like walls to jump over) or barriers
(ditches) we have everywhere, we may have to create an external computer vision
system that would extract and abstract these information for us from the visual
frames in the games and then we feed this abstracted numerical information into our
system. But this approach would lead us to manually selecting and training a system
to identify (classify) and position the required objects/information that we want to
extract and then convert the extracted information into structured data (like position
coordinates) and then train algorithms to first identify (called object detection in
computer vision) them from the real-time feed of images (all games and videos
could be conceived as a continuous feed of images frames of a given resolution at a
particular frame-per-second/feed-rate), then count and identify each of their

12 1 Introduction to Reinforcement Learning



instances (called instance segmentation) from these image frames and then abstract
the required objects to some structured format into the state formulation.

This not only seems to be an aeneous but also has an assumption that we have
the best knowledge of all what is important for the agent to learn. Also, in this
methodology, the major work of making such systems for this complex
computer-vision-related tasks and subsequent simplification is outside of the agent
and the agent’s performance is highly dependent on these external decisions and
systems. This approach is also suboptimal as we discussed earlier that we would
like the complex work to be done by the agent and we would like to serve it with
the information that is simple for us to acquire and manipulate. In the next section,
we will discuss a better approach to achieve these goals.

1.4.3.4 Example of State Formulation for Graphical Games

The previous approach of an external intelligently designed and comprehensive
computer vision system that extracts and abstracts all the objects of importance for
the state/agent is definitively possible but is not the best possible for two major
reasons.

First, we need a lot of human, technical, and game SME involvement to do this.
Second, as we identified in the last two sub-sections, there are many complex tasks
that we may easily delegate to the agent’s intelligence (underlying models of the
agent) and let the agent decipher the most important information to extract and the
best way to abstract it on its own (for example, refer to the CartPole example where
instead of computing the angular velocities to feed to the agent we just served it a
state which comprised of two subsequent angular positions of the pole separated by

Fig. 1.5 The “Mario” video game

1.4 The State in Reinforcement Learning 13



a fixed unit of time). We just need to ensure that the state formulation is in sync
with the models that the agent such that the agent’s model could make sense from
the data of the state and automatically identify and extract important information
from the way the state is structured.

One solution to achieve this is that we directly embed the complete image data of
each frame as the state. Assuming the response rate of the agent is in sync with the
frame rate of the game, the agents action could be synced with the game activities.
The agent could learn from each game frame (image frame served as state) which
action to take from one of the nine possible actions, namely, walk-ahead, run-ahead,
walk-back, jump-in-place, jump-ahead, jump-back, duck, duck-and-jump,
stay-there, using a model that ends in some classifier (with nine output classes
representing these nine actions) to classify/select the best action. But we have
already seen in the previous sub-section of cart pole that in some cases sequence is
important. Knowing the sequence of events and having the knowledge of previous
frames could be of good use here as well.

So should we collect a sequence of some frames (say 10 frames) and have the
agent take actions on that? That is doable but imagine the size of the state (which
will be of the dimension 10 � frame-width � frame-height � color-channels-
of-frames) and computational load that would be required just to process the state.
We have not even started to understand complexity of the agent and its model till
now, and once we do so we will understand the complexity of the processing that
will be required by the agent to give it the intelligence required to do take action on
such complex state. So this solution is technically possible, but not computationally
efficient and may be not even possible to implement with the systems available in
general use today.

A better solution may encompass the technological and academic advancements
made in the field of deep learning for vision and sequence data. The details of some
similar systems we will be covering later in this book. For the purpose of this
section, we could say that our state would comprise features of convolutional
tensors for one or more frames of the game. Such sequence of convolutional maps
in turn could be abstracted into some form of recurrent deep learning architectures.
The agent in turn would be equipped with the necessary transformations and
algorithms to understand and draw intelligence from this formulation of the state.
The agent would recommend the best action that action would be fed to the game
controller procedure, and the resulting frames again extracted and fed to the agent
(via the environment) for the next action’s recommendation.

1.5 The Agent in Reinforcement Learning

The agent is by far the most important piece of the Reinforcement Learning as it
contains the intelligence to take decisions and recommend the optimal action in any
given situation. It is for the sole purpose of training the agent’s underlying intel-
ligence that we created the representations of a similar environment that it will be

14 1 Introduction to Reinforcement Learning



facing and formulated a way to abstract the environment and the context for our
agent in the form of a suitable state.

Since agent is so important, a lot of research has gone into its learning archi-
tecture and associated models. So there are a lot of things we need to discuss with
respect to the agent and we will take it one by one distributed across several
chapters. Here we would try to give the insights of the objective of the agent in
general at a high level and also discuss some differences that led to the development
of different types of agents.

1.5.1 The Value Function

The agent needs to decide which is the best action it can take when facing a specific
state. There are essentially two ways the agent could reach to that decision. The first
focuses on identifying which is the next best state to be in (reachable from the
current state) as determined from the history of present and future rewards that the
agent has received when it was in this particular state earlier. We could extend this
logic to similar state, and that is where a lot of learning to convert a state into a
representative function will come. But essentially in all these techniques, we are
trying to predict the “Value” (or utility) of any state (or state–action combination),
even the unseen ones, based on the ones that we have seen. This value could be a
function of all present and (discounted) future rewards that could be attributed to
being in this state.

The “(State) Value Function” is denoted by V(s), where the subscript s (for state)
denotes that this V (value) is a function of the state. Such a value function
encapsulates the different problems we had discussed like that of dealing with
future/delayed and probabilistic/uncertain rewards by converting the different
rewards into one homogenous function tied to a state that the agent will try to learn.
The agent’s recommendation in turn will be influenced by its identification of the
most lucrative/profitable state to be in from the different states that are possible to
reach from its given state by taking that particular action (the action that it will
recommend). Then the agent recommends an action that will transition it to the
identified most lucrative state from where it will have to decide again on the next
most lucrative state reachable from this new state and so on. The underlying
training of the agent tries to learn this very important “Value Function” that could
represent the most accurate possible “Value” of each state using the training data/
experiments.

1.5.2 The Action–Value/Q-Function

In the last sub-section, we discussed the “Value Function”, and how using it the
agent decides the best state to be in and then on the basis of that decision it takes an

1.5 The Agent in Reinforcement Learning 15



appropriate action to maximize its chances of attaining that state. But this is a very
indirect way to decide the best action. We could as well take such a decision
directly by determining the best action possible while in a given (present) state. This
is where the “Action–Value Function”, denoted by Q(s, a), helps. Because of the
Q-symbol used for its notation, and also to avoid confusion because of the reference
to value function, the action–value function is also referred to as the “Q-Function”.
Note that where the “Value Function” is just a function of (denoted by subscript in
parenthesis) state—s, the “Q-Function” is a function of both the state—s and the
action—a.

1.5.3 Explore Versus Exploit Dilemma

We discussed the “Action/Value Function” in the previous sections. To train an
optimal value for these functions, we can start with a function with randomly
initialized values or some fixed/heuristic initialization as default. The values of this
“Action/Value Function” are improved from the defaults by conducting a lot of
experiments over the training data/scenarios/episodes.

If the agent gets predisposed to any default value or any intermediary “Action/
Value Function” it can definitely take decisions on the basis of the so evolved
“Action/Value Function” or in other words “Exploit” the already learned infor-
mation, but it will not be able to improve this function further by “Exploring” new
information. So we need to create a mechanism that the agent could use to choose
the decision criterion. There are essentially two approaches in which this could be
done, namely, the On-Policy and Off-Policy approaches which we will explain in
the next section.

1.5.4 The Policy and the On-Policy and Off-Policy
Approaches

The strategy that the learning mechanism uses to determine the next best action that
should be taken based on the current state is called the “Policy” and is denoted by
the symbol “p”. The “Policy” is stated as a function of the state “p(s)” and deter-
mines the best action to be taken in a given state. This “Policy” remains valid for
the entire learning/training phase. But during the actual deployment, we may
consider a different and often a simpler strategy, mainly to favor exploitation over
balancing between exploration and exploitation.

Now let us take an approach to learn the “Q-Function” in a way that we will
compute the probability of goodness of each action and then scale all to sum up to
one and pick the one action stochastically based on the respective scaled proba-
bilities of different actions. Under this policy, the action with the highest probability

16 1 Introduction to Reinforcement Learning



of reward also has the highest probability of being selected and the others have less
probability of being selected in similar order. So the “Policy” we chose has the
probabilistic nature of exploration and exploitation already built it in this approach.
If we use such an approach for learning then it is called an “On-Policy” learning.

On the other hand, we may come up with a learning mechanism in which with
some probability, say ɛ = 0.2 (the symbol ɛ is pronounced epsilon), we would
“Explore” (the outcomes of) new actions/decisions instead of going by the current
best action estimated/predicted to be taken in the current state. During the
“Explore” phase for the sake of simplicity let us assume that we just select action/
decision randomly for now (with equal probability for all probable actions in the
current state). But keep in mind that there are many different and even better ways
(and hence policies) to conduct similar “exploration”.

On the remaining occasions when we are not exploring (i.e., with a probability
of (1 − ɛ) = 0.8), we would “Exploit” or take a “Greedy” decision so as to take the
action which has the best “Q-Value”. This “Q-Value” in turn is being learnt using
different mechanisms/algorithms. Thus, we use a different policy for “Estimation”
or update of our “Q-Function” and different policy for the “Behavior” of the agent.
These approaches where exploitation is not in-built in the “Estimation” policy, and
hence a separate “Behavior” or policy is required for the same, is called the
“Off-Policy” learning approach.

1.6 Summary

In this chapter, we started with giving a more formal definition of Artificial
Intelligence and identified where Reinforcement Learning fits with respect to this
definition. We then discussed the basic design of Reinforcement Learning. In
Reinforcement Learning, the actor interacts with the environment to change it and
in the process receives a reward/penalty. Having an understanding of what rewards
are received in various combinations of state and actions, the goal of the
Reinforcement Learning agent is to maximize the total rewards.

We then discussed why this task of maximizing the total rewards is not as trivial.
We discussed the concept of future rewards attributed to current action. We also
discussed how rewards themselves could be uncertain, or difficult to attribute
correctly to different actions in sequence. It may be difficult to arrive at a reward
function that quantify all rewards on a common numerical scale and any changes in
the reward function has a potential to significantly alter the agent’s behavior.

Next, we discussed the state or to be more precise an observable state or simply
observation which is how we represent the state of the agent’s environment at any
step in the form of a data structure using which as input the agent could be trained.
We discussed how even very complex scenario involving intensive interaction of
the domain behavior and physics laws could be represented as simple data struc-
tures from which the agent might be better place to implicitly learn these interac-
tions instead of us coding them into the observation feed. We also took the example

1.5 The Agent in Reinforcement Learning 17



of situations where we would input the whole series of images/video-feed as a
human would see environment into the agent to make sense of it.

We discussed the working of the agent. The agent’s objective is to maximize the
rewards that it receives by taking the different actions corresponding to the states
that it receives. The concept of total rewards with all the complexities of dealing
with the rewards is converted into a uniform scale of value. This value could either
be just a function of the state (V—the Value function) or of a combination of an
action taken in a particular state (Q—the Action–Value function). To learn this
function, the agent goes through explore and exploit mechanisms to visit new
states/actions or update the value of the existing ones, respectively.

18 1 Introduction to Reinforcement Learning



Chapter 2
Mathematical and Algorithmic
Understanding of Reinforcement
Learning

The Markov Decision Process and Solution
Approaches

Abstract In this chapter, we will discuss the Bellman Equation and the Markov
Decision Process (MDP), which are the basis for almost all the approaches that we
will be discussing further. We will thereafter discuss some of the non-model-based
approaches for Reinforcement Learning like Dynamic Programming. It is impera-
tive to understand these concepts before going forward to discussing some
advanced topics ahead. Finally, we will cover the algorithms like value iteration and
policy iteration for solving the MDP.

2.1 The Markov Decision Process (MDP)

Markov Decision Process (MDP) is the underlying basis of any Reinforcement
Learning Process, and all that we discussed in the previous chapter in short could be
summed up as an MDP. MDP is formed of two terms, namely, “Markov” and the
“Decision Process”.

The “Markov” term refers to the “Markov Property” which is the underlying
principle of the “Markov Chain” phenomena of which MDP is a form. Markov
Property is also called the “memoryless” property for stochastic (or probabilistic/
uncertain in simpler words) processes. For a process that has gone through several
states, and is in a specific given state now, if this process follows the Markov
Property, then the conditional probability distribution of the probable next state
would depend only on the present state, irrespective of the sequence of states the
process has gone through to reach this specific current state. Therefore, even if there
are several ways (sequences) to reach a particular state, no matter which particular
way (sequence) the current the process adopt to reach a specific state, the condi-
tional probability distribution of next states from this specific state remains the
same.

© Springer Nature Singapore Pte Ltd. 2019
M. Sewak, Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-13-8285-7_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_2&amp;domain=pdf
https://doi.org/10.1007/978-981-13-8285-7_2


Markov Chain applies the Markov Property to a sequence of stochastic events. It
refers to a stochastic model which comprises a sequence of events such that the
probability of next event is based solely on the state achieved in the previous event.
The sequence of events in a Markov Chain could occur either in discrete or con-
tinuous time but are comprised of countable state spaces. From the description in
the last chapter, it should be clear that the states we described were either following
a similar pattern (data structure) from the onset or we otherwise converted it into a
uniform pattern. Remember the examples of continuous cart pole where some
lengths of sequence were required to training our agent. For this example, we had
the relevant number of previous positions accumulated in a single state such that
our sequence of states by themselves does not depend on any other previous state
except the present/current state.

The Markov Decision Process (MDP) is defined as a discrete time stochastic
control process. MDP applies the Markov Chain property to a given Decision
Process. The decision process in context of Reinforcement Learning implies to the
“Policy” p(s) which helps the agent determine the best action to take or transition to
make when it is in a specific current state. The Markov Decision Process provides a
mathematical basis for modeling the decision process where the outcomes are partly
in our control (affected by the decision of action we took) and are partly random
(corresponding to the challenges of estimating and uncertainties we discovered in
the previous chapter).

2.1.1 MDP Notations in Tuple Format

The Markov Decision Process (MDP) defines the state transition probability
function, i.e., the probabilities of transitioning from the current state—s, to any of
the next possible state—s′, by taking an action—a. The state transition probability
function is conditioned on the action that is taken. Such probability function is
denoted as Pa (s, s′).

Following the Markov Property, the given state transition probability function is
conditionally independent of any of the previous states or actions except the current
ones. Similarly, Ra (s, s′) defines the reward function for the rewards received on
attaining (transitioning to) state—s′ from the current state—s, conditioned on the
action—a taken. The probability of attaining the new state—s′ from the previous
state—s on taking an action—a under Pa(s, s′) is given by Pa(s, a s′); and the
instantaneous reward achieved on attaining the new state—s′ from the previous state
—s on taking an action—a could be computed from the reward function Ra(s, s′) as
Ra(s, a, s′).

The Markov Decision Process or the MDP, hence, could also defined as a set of
five tuples comprising of (S, A, Pa, Ra, c), where S is the present/current state, A is
the action taken, Pa and Ra are abbreviations for Pa(s, a, s′) the next state proba-
bility, and Ra(s, a, s′) the reward achieved on transitioning from the current to the
new state. In the last chapter, we discussed the future rewards and hinted at

20 2 Mathematical and Algorithmic Understanding …



discounting the future rewards to the present time so that it could be fairly com-
pared with the present rewards; the discounting factor c (a real number between 0
and 1) is the discounting factor that does exactly this. In terms of the discounting
rate r, the discounting factor c is given by c = 1/(1 + r). To discount a reward
attained n steps ahead to the present step, the future reward is discounted by a factor
of cn to account for it to the present time step.

2.1.2 MDP—Mathematical Objective

The objective of the MDP or a Reinforcement Learning agent under MDP is to
maximize the sum total of all discounted rewards. Maximizing the sum total of all
discounted rewards may in turn require to find a policy that may do so. The MDP
therefore needs to be coupled with a particular policy. The following process of
taking actions as per the (optimized) policy in each subsequent state gets reduced to
a Markov Chain.

The subsequent action—at (at any time t) taken in any state—s is given by the
policy which is denoted by p(s). Using the notations discussed earlier, under this
policy we have the discounted reward at time t is given as

ctRatðst; stþ 1Þ ð2:1aÞ

Accumulating the rewards at all time steps, the total reward under this policy is
given by

X1
t¼0

ctRatðst; stþ 1Þ ð2:1bÞ

The policy p(s) that maximizes these cumulative rewards (objective function) is
the solution to our MDP problem.

2.2 The Bellman Equation

The Bellman Equation (named after its researcher Richard Bellman, an American
mathematician) gives a recursive solution to the MDP problem as given in the
previous section. This recursive form of the MDP is used to solve the MDP using
iterative computer science algorithms like dynamic programming and linear pro-
gramming and is the basis for many other variations which forms the mathematical
basis for other algorithms meant to train the Reinforcement Learning agent. The
Bellman equation gives mathematical solution to estimate both the value function
and the action–value/Q-function.

2.1 The Markov Decision Process (MDP) 21



2.2.1 Bellman Equation for Estimating the Value Function

The MDP objective function as derived in the earlier section is given as below:

X1
t¼0

ctRatðst; stþ 1Þ ð2:2Þ

The value function is the expected value, which includes both the present and
discounted future rewards that could be attributed to being in a state that could be
mathematically framed as

VpðsÞ ¼ Ep Rtjst¼s

h i
ð2:3Þ

The “E” symbol denotes the expectancy of a stochastic function, and “|” is the
conditioning operator. So, the value function under a given policy “p” for a given
state “s” is given by the expectancy of all Rewards at time t(Rt) given that (con-
ditioned on) the state at time t(st) = s.

From the discussion in the MDP section about Pa(s, s′) and Ra (s, s′), these could
also be represented in stochastic notations as below:

Paðsas0Þ ¼ Pðstþ 1 ¼ sjst¼s;at¼aÞ ð2:4Þ

Raðsas0Þ ¼ E½rtþ 1jst¼s;stþ 1¼s0;at¼a� ð2:5Þ

which states the same similar ideas as we discussed earlier, i.e., the state transition
probability Pa(s, s′) is the probability of reaching the state—s′ (at time t + 1) from
state—s (from the previous time step t) on taking an action “a” at time t.

Similarly, Ra(s, s′) is the expectancy of the reward r received at time t + 1, when
transitioning from state—s at time step t to state—s′ at time step t + 1 by taking an
action a at time step t to enable this transition.

Combining (2.2) and (2.3) and using the expressions for Pa and Ra from (2.4),
and (2.5), we have

VpðsÞ ¼ Ep

X1
i¼0

ciRaðtþ iÞPðstþ i;stþ iþ 1Þ

" #
ð2:6Þ

Instead of summing up from i = [0, ∞], we could do the same thing recursively
such that we just take the present rewards and add to it the discounted (discounted
by a single time step) “Value” (and not just rewards) of the next state. This
expression will be equivalent to the discounted rewards from all subsequent time
steps to infinity as per the Markov Property. Equation (2.6) could be rewritten in the
recursive form as

22 2 Mathematical and Algorithmic Understanding …



VpðsÞ ¼ Ep Rtþ 1 þ c
X1
i¼0

Ratþ iþ 1Pðstþ iþ 1;stþ iþ 2Þ

" #
ð2:7Þ

VpðsÞ ¼ Ep½Rtþ 1 þ cVpðs0Þ� ð2:8Þ

As we would have noticed by observing the subnotations in these expressions,
all these equations are valid under a given policy. The role of the policy here is to
give us the probability distribution of taking different possible actions which may
lead to different possible states. So, we can include this probability of reaching
different states under this policy as weights and multiple it by the outcomes from
those state to further simplify this equation as a weighted sum of the different
possibilities we have

VpðsÞ ¼
X
a

pðs;aÞ
X
s0

Psas0 ðRsas0 þ cVpðs0ÞÞ ð2:9Þ

2.2.2 Bellman Equation for estimating the Action–Value/
Q-function

For the purpose of action–value (Q-function) estimation, we would first like to
estimate the value of any given action when the agent is in a particular state. Unlike
what we did value function estimation in Eq. (2.9), i.e., to sum across all the actions
and weigh them with their respective probabilities, here we would like to sum
across all the states that could be reached by taking a particular action. Since the
Q-function is parameterized over a particular action, so in this the action is also
fixed besides the present state that the agent is in.

We need to also consider that by taking a particular action we may stochastically
reach different states and such transitions may be accompanied by different
cumulative rewards (values) associated with them. So, we will change Eqs. (2.8)
and (2.9) for value function slightly to adapt it for the action–value/Q-function as
below (note the changes in subscripts as well):

Qpðs; aÞ ¼
X
s0

pðs;s0Þ Rsas0 þ cEp

X1
i¼0

cirtþ kþ 2jstþ 1¼s0

" #" #
ð2:10Þ

This equation simply says that the action–value/Q-value of a given action when
the agent is in a particular state is the sum of the expectancy of discounted rewards
of each state that could be reached by taking this particular action when the agent is
in the given current state, weighed by the probability of reaching that new state
from the given current state by taking the specified action in consideration.

2.2 The Bellman Equation 23



2.3 Dynamic Programming and the Bellman Equation

2.3.1 About Dynamic Programming

Like Linear Programming, Dynamic Programming is a way to solve a complex
problem by breaking it down into smaller subproblems. But unlike Linear
Programming, Dynamic Programming is a bottom-up approach, i.e., it aims to solve
the smallest or the simplest problem first and then iterative use the solution of the
smaller problems to solve the larger problems till the sub-solutions recursively
combine and leads to the solution of the initial complex/problem as a whole.

If the “approach” to the solution of a smaller subproblem is also a good “ap-
proach” for a larger subproblem, then we can say that the way the problem has been
broken down constitutes an “Optimal Substructure” (a given problem could be
broken down into smaller problems which could be solved recursively), and have
“Overlapping Subproblems” (the solution approach of smaller subproblem works
for the larger subproblem as well, and so on) which are the two pre-requisite for the
feasibility of application of dynamic programming on a given problem.

Let us try to understand this with an example. Suppose we are trying to make an
application similar to “Google Maps”, in which we would like to find the best/
shortest paths between the entered source, and destination locations/coordinates.
This is a complex problem as there could be many paths between source and
destinations. But imagine if we could break this problem down to two similar
subproblems, first of which is of finding the best/shortest path between the source
location/coordinate and some intermediary location/coordinate, and the second is to
find the best/shortest path between the destination location/coordinate and the
chosen intermediary location/coordinate. In this case, we would be left with solving
two “similar” subproblems (Optimal Substructure property) which is finding the
best path between the source and that intermediary and finding the best path
between the destination and the intermediary, and then combining the solutions to
these two subproblems to obtain the solution for our original complex problem.

These two subproblems could further be broken down in a similar manner, i.e.,
for each of the subproblem, we would again end up finding intermediaries within
each, till the so-obtained subproblems cannot be further broken down (i.e., when we
are left with just a straight path between two locations without a possible inter-
mediary location between them; in that case, the solution for the best path between
these two locations will be the only direct path between them), the solution to which
is simple, which is a direct path. So, if we solve the lower most/smallest/simplest
problem, the higher level problems get solved simply by combining the solution to
these subproblems, which indicates that the problem has an “Overlapping
Subproblems.”

24 2 Mathematical and Algorithmic Understanding …



2.3.2 Optimality for Application of Dynamic Programming
to Solve Bellman Equation

The Bellman Equation brings the Markov Decision Process (MDP) into a suitable
structure such that it fulfills the pre-requisites for the application of Dynamic
Programming (i.e., it fulfills the conditions of Optimal Substructure and
Overlapping Subproblem) to solve the MDP.

Equation (2.9) needs to be optimized in order to find the best/optimal value
function, i.e., we need to find the most optimal actions when the agent is in a given
state to maximize that state’s value (or the utility of being in that state). This
problem is broken down into a format that the state’s value does not depend on any
future reward directly except that of the current reward (which is easy to know as is
received instantaneously and hence is also definite), and the value of the next state
that is estimated/computed as of the current optimization step. The value of the next
state could similarly be found, by knowing the value of the state next to it and so on
recursively.

So, Eq. (2.9) gives the “Optimal Substructure” and since all these problems are
similar and have overlapping solutions, the “Overlapping Subproblem” property is
also satisfied. Hence, MDP using the Bellman Equation formation is a good can-
didate to be solved using Dynamic Programming.

2.4 Value Iteration and Policy Iteration Methods

There are two broad approaches that could be used to solve the MDP using Bellman
Equation, namely, the value iteration and policy iteration methods. Both of these
methods are iterative in nature and theoretically could be implemented using
dynamic programming. But due to high computational load and some other
drawbacks in using dynamic programming as we will discuss later, it might not be
practical to convert all the problems using these methods to be solved using
dynamic programming.

Before discussing both of these briefly, we would cover two more variations
coming from the Bellman equations, which are called the “Bellman Equation for
Optimal Value Function” and the “Bellman Equation for Optimal Policy” which
gives the mathematical basis for these methods.

2.4.1 Bellman Equation for Optimal Value Function
and Optimal Policy

The Bellman Equation for “Optimal Value Function” is given by Eq. (2.11) and
that for “Optimal Value” is given by Eq. (2.12) below:

2.3 Dynamic Programming and the Bellman Equation 25



VpðsÞ ¼ Rs þ max
a

c
X
s0

Psas0Vpðs0Þ ð2:11Þ

pðsÞ ¼ argmax
a

X
s0

Psas0Vpðs0Þ ð2:12Þ

It could be observed easily that Eq. (2.11) is derived from Eq. (2.9) and is
iterative in nature such that in each step we update the value function, to update any
changes in value function till it converges (difference between successive updates
are below a specified threshold). The updated value of a state in each iteration is
sum of the current reward and the maximum discounted value of any of the next
states weighed by the probability of attaining that state in the next step.

Equation (2.12) is a further extension of Eq. (2.11) for the policy optimization.
It says that the optimal policy is the one which recommends an action when the
agent is in a current state such that it leads to a state that maximizes the value of the
current state by taking that action. This is because as per Eq. (2.11) the value of a
state is dependent on the maximum value of the next state that is possible from a
given state.

The argmax argument in Eq. (2.12) selects the action that maximizes the
underlying function, which in this case is the value of the next state that could be
reached by this action, weighed by the probability of reaching that state by taking
this action.

2.4.2 Value Iteration and Synchronous and Asynchronous
Update modes

The “Value Iteration” method is used for the discrete state–action space and is not
suitable for continuous action space. Even within discrete state–action space, if the
action space is large, this approach is not recommended to be used because of
computational inefficiencies.

In the “Value Iteration” method, we first initialize the value function with some
default values, these default values could be all 0s or any other value to start with.
Then using the “Bellman equation for value function,” i.e., Eq. (2.11), we update
the value function with each iteration/experiment. There are two modes to update
the value function, namely, the synchronous mode and the asynchronous mode.

In Synchronous mode, the updates are made only at the end of the iteration and
then the values for all the states are updated simultaneously, whereas in
Asynchronous mode, the values of individual states are updated as and when a
change is observed.

After the value function converges (changes in value function are below a
particular threshold), the optimal policy is estimated using the Bellman optimality
Eq. (2.12).

26 2 Mathematical and Algorithmic Understanding …



2.4.3 Policy Iteration and Policy Evaluation

In the “Policy Iteration” method, as the name suggests, we iterate over a policy
function in steps instead of the value function as in the value iteration method. We
first initialize our policy (assign probability of taking any action for a discrete action
space) randomly or with suitable default values.

After initializing the policy, we iterate across the following steps till the given
policy is converged (changes in probabilities across each iteration is below a par-
ticular threshold). The first step in each iteration is that of the “Policy Evaluation”,
in which we estimate the value function using the Bellman equation for value
function (Eq. 2.11), and then we iterate the policy using the Bellman equation for
optimal policy (Eq. 2.12).

The Policy Evaluation step is computationally very expensive, and as the state
space grows, so does the complexity (remember in the case of value iteration the
complexity was more dependent on action space). So, the Policy Iteration method is
used mostly for MDPs with a small and mostly discrete state space. But since the
agent is actually trying to work on a policy, and since value iteration proves to be an
indirect way to improve policy, so sometimes policy iteration may offer a faster or
better guaranteed convergence than value iteration.

2.5 Summary

This chapter covers the very important mathematical background of Reinforcement
Learning. We discussed the Markov Decision Process, which is the underlying basis
of any Reinforcement Learning process, and then converted the Reinforcement
Learning objective into a mathematical optimization equation. Owing to the
underlying complexity of the system, we required a better to optimize this objective
function. This is where we introduce the Dynamic Programming and illustrated how
the Bellman’s equation is ideally suited to be solved by Dynamic Programming.

We then discussed the two formulations of the Bellman’s equation, namely, the
“Bellman Equation for Policy Iteration” and “Bellman Equation for Value iteration”
to solve the MDP using any of the two approaches depending upon which is better
suited for specific scenarios.

2.4 Value Iteration and Policy Iteration Methods 27



Chapter 3
Coding the Environment and MDP
Solution

Coding the Environment, Value Iteration, and
Policy Iteration Algorithms

Abstract In this chapter, we will learn one of the most critical skills of coding our
environment for any Reinforcement Learning agent to train against. We will create
an environment for the grid-world problem such that it is compatible with OpenAI
Gym’s environment such that most out-of-box agents could also work on our
environment. Next, we will implement the value iteration and the policy iteration
algorithm in code and make them work with our environment.

3.1 The Grid-World Problem Example

In the chapter, we intend to solve an MDP problem hands-on using Dynamic
Programming. We will take the easy-to-understand Grid-World problem to illus-
trate the problem and code its solution. In this section, we will describe the problem
briefly.

3.1.1 Understanding the Grid-World

The objective of this game/MDP is to accumulate the maximum possible points
while navigating the Grid-World as shown in Fig. 3.1 above. We get a reward of
(say) +100 on reaching the terminal state (state numbered 64 in the grid world in
Fig. 3.1), whereas we get a reward of (say) −1 (penalties are denoted as negative
rewards) for every turn.

Without this penalty, the agent may never reach the terminal state or may reach
the terminal state very late as in that case the total reward will remain across the
nonterminal states, which may even lead to the agent getting “stuck” hunting
across/between some intermittent states till infinity.

© Springer Nature Singapore Pte Ltd. 2019
M. Sewak, Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-13-8285-7_3

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_3&amp;domain=pdf
https://doi.org/10.1007/978-981-13-8285-7_3


Another way to force convergence is to limit the total number of turns allowed.
For this illustration, we will use the earlier method and use the penalty of −1 for
each turn taken by the agent.

Additionally, to make the problem more interesting, we have introduced some
ditches in the grid. If the agent happens to get to a grid with a ditch, a penalty/
negative reward of −10 will be accrued.

3.1.2 Permissible State Transitions in Grid-World

In the previous chapters in multiple contexts, we used the disclaimer about tran-
sitions mentioning “of the states/action possible from a given state.” This is because
not all the states are possible to be visited directly from a given state. In the
mathematical form, this could be represented as nonzero state transition

Fig. 3.1 Grid-world example illustration

30 3 Coding the Environment and MDP Solution



probabilities for all the states that could be visited from a given state. In this
example, we will take a different approach to accomplish this.

In the example of grid world, the agent from a given state/cell could move only to
the adjacent, non-diagonal cells within the grid from a particular cell in a given turn.
From a given state, the agent can move in either of the four directions, UP (U), DOWN
(D), LEFT (L), or RIGHT (R). If there exists a valid state on taking these actions, the
state is transitioned to that valid state, else it remains the same. For example, if the agent
is on state 53 and it takes an action to move LEFT/(L), then it will reach state 52 and
get a penalty of −10 for reaching a ditch and another −1 for a turn used. Whereas if the
agent is in state 50 and decides to move LEFT (L), then that is considered as an invalid
state (as it goes out of the grid), so the agent’s new state is the same as the previous
state, i.e., 50, and the receives a penalty of −1 for a turn used.

3.2 Constructing the Environment

The environment serves the purpose of presenting the state and providing the
relevant responses to the agent to train it. There are many projects that offer an
environment class that we could inherit to start with. Alternatively, we could choose
to build our own environment class either from scratch or by extending some of the
popular environment classes from different libraries.

There also exists readymade environment for some use cases that we could use.
“OpenAI’s Gym” is a very popular platform that offers a lot of different types of
environments to use to build agents. These environments, besides having special-
ized features and methods, expose some standardized methods (as we will discuss
in details later in this chapter) which are compatible with many agents. If the
environment is compatible with the agent, then we can simply create an object from
the environment class and pass it to the agent class object as a parameter.

We can test our agents against these environments and generate reference scores
against them. Since these are standardized environments, the results that the agents
scored (cumulative rewards) while using these environments could also be com-
pared against the communities’ (of researchers/developers) similar work/agents.

3.2.1 Inheriting an Environment Class or Building
a Custom Environment Class

Often the purpose of building a Reinforcement Learning agent is to deploy it in real
life to take actions in a real-life scenario/environment, and that is a skill that this
book focuses to inculcate in its readers. With this motivation, we would not like to
rely only on using the default environments provided by “OpenAI Gym” or other
similar projects.

3.1 The Grid-World Problem Example 31



“Keras-RL” another popular project for training Reinforcement Learning agents
also offers similar environments and its environments are also compatible with the
OpenAI Gym’s environment class.

In the later chapters when we focus on building Deep Reinforcement Agents, we
would require a standardized environment to test our agents and compare its per-
formance against some of the community works, and that is when we may leverage
these existing environments. In this chapter, however, we would like to enable our
users with the know-how of creating their own environment classes so that they
could comfortably build a unique environment that closely mimics the real sce-
narios of their respective domain and could pose realistic challenges for the
Reinforcement Learning agent so that the trained agent’s performance in their
respective domains is closer to expectations.

Having said so, there are two options that we could use to build a custom
environment. The first is, of-course, building a custom environment from scratch,
that is, building a python class that just inherits the object class for python 2, and no
class for python 3 (in Python 2 all base classes inherit the object class).

The second option is that we inherit one of the standard base environment
classes from some of the projects that offer it and then customize it to implement the
required functionalities. This option is not only easier to implement than the former
option but also has some inherent advantages. When implementing a real-life
project, often we would like to utilize a base agent from a given library/project and
customize it further for our specific advanced need. Most of the default agents from
common Reinforcement Learning libraries are compatible with specific standard-
ized environment class from some specific libraries in addition to some other
custom environment class that inherits the supported environment class. For
example, Keras-RL environment class extends the OpenAI Gym’s environment
class, so the Reinforcement Learning agents in the Keras-RL library are compatible
with both the Keras-RL environment class objects and the OpenAI Gym environ-
ment class objects. So, it could be a good idea to follow this easier route of
extending a standardized environment class with the required features and
enhancements to implement a custom environment.

But for the purpose of this chapter, instead of taking the latter easier approach,
we want to focus on enabling the readers to understand the environment class in
detail and would use the former option. Next, we will discuss some essential recipes
(common patterns) that will help users understand some important decision criteria,
before discussing the actual code.

3.2.2 Recipes to Build Our Own Custom Environment Class

Whether we are inheriting a base environment class, or building one from scratch,
there are some recipes (patterns) that if we follow, it would become easier to build
the agents that can work seamlessly with our environments. Also, often we may be
able to use some of the default agents provided by other libraries/packages to work

32 3 Coding the Environment and MDP Solution



with our environment or alternatively will have significantly less to code to build a
custom agent from scratch.

The essential pre-requisites for building a custom environment compatible with
many standard libraries are fairly short and simple. There are just two functions that
we need to implement (at a bare minimum), with the specified required input and
output formats.

These two functions are the “step” and “reset” methods/functions which are
explained below. Class functions are also called methods, and this is the termi-
nology we would follow to refer to the environment class’ functions to avoid
confusing reference to any stand-alone functions. Besides these two methods, we
are free to and often recommended to code as many additional functions to increase
the versatility and applicability of our environment for different agents and for
different purposes that we may want to use it for. Here, in the example that we
would be illustrating in this chapter later, we have separated the contents of the
“step” function into separate discrete public functions that are also being used to
train our agent. This is also done deliberately to illustrate some advanced concepts.
Additionally, we have other methods/functions in our implementation to enhance
the versatility of the agent and to enhance understandability and ease-of-debugging
of our code.

The Step () Method

To train a Reinforcement Learning agent, we need a mechanism to present to it a
state; the agent then takes the best possible action possible for that state (as per its
current learning); subsequently, we need a mechanism to give the agent a reward/
penalty corresponding to that action, and to change the state that occurs because of
the action. This new state is again served to the agent for taking the next action and
so on.

The essential responses in this sequence that the environment delivers are the
new states and reward by taking a given action (in the current state). For this, the
environment requires a method that accepts the action (as suggested by the agent
against the current state). In case the current state was generated by some other
method or otherwise could be altered outside of this method such that this method
may lack the complete information of the current state, then the current state may
also be required by a custom implementation of this method.

The step method on receiving the above inputs processes them to returns a tuple
in the format (observation, reward, done, info). A brief description of the elements
of this tuple is as follows. The element names are followed by the element’s data
type in brackets.

Observation (object)

This variable constitutes the (new/next) state that is returned from the environment
on taking the particular action by the agent (as sent in the step method’s input). This
state could have observations in the way best represented in the environment. Some
examples of these states are provided in Chap. 1. The python data type for the
observation class inherits the object class.

3.2 Constructing the Environment 33



Reward (float)

This is the instantaneous reward received by the agent for reaching the particular
new state on taking the action (input). The data type for reward is float. This is only
the instantaneous reward; in case an accumulated reward is of interest, that needs to
be maintained outside this method/environment object separately.

Done (boolean)

This is a Boolean flag and is of importance in environments, which deals with
episodes. An episode is a series of experiments/turns that has a beginning and an end.
For example, in our Grid World example, when we reach a terminal state, the game
“Ends” and on reaching such a state, the returned value for the element “done” will be
“True”. The “done” element’s value will again be reset to “False” when the next
episode starts. The start of a new episode is triggered when the environment is “reset”
as we will discuss in the next subsection on the reset () method. The “done” element’s
value will remain “False” until the episode is not complete. If the environment is in
done state (i.e., done == True), the step function will not work, until the environment
is not reset, as a next step is not feasible in a completed episode.

Info (dict)

This is an optional parameter and is used to share the information required for
debugging but could optionally be used for other purposes as well in a custom
implementation. This is a dictionary (python dict) and must contain the key, value pairs
of the information that is sent. We can also send the state probabilities, for example, to
indicate why the particular state was chodes, or some hints on the reward computation.
Often in the agent code it might not be required, and hence instead is received in an _
variable, which means that its values are not stored in any callable variable.

The Reset () Method

Whenever the environment is instantiated for the first time, or whenever a new
episode starts, the state of the environment needs to be reset.

The reset function takes no argument and returns an observation/state corre-
sponding to the start of a fresh episode. Depending upon specific environments,
other internal variables that need to be reset/instantiated for a fresh episode’s start
are also reset in this function.

3.3 Platform Requirements and Project Structure
for the Code

We are using Python 3.x (3.6.5 to be precise) for this code example and have
written the classes in Python 3.x format. In this book, whenever we refer to Python,
we would mean the CPython variant of Python (which uses the C compiler).
Besides CPython, there are many other variants of Python like Jython, PyPython,

34 3 Coding the Environment and MDP Solution



IronPython, etc., but we would use the most commonly used CPython throughout.
The only Python library that we would be using in this chapter is “numpy”. Besides
“numpy”, there is no other dependency that this code has on any other Python or
external library. In case if the readers are using a distribution of Python like
Anaconda (or miniconda), the “numpy” dependency would come bundled in the
distribution, else this could be installed by using the terminal/shell/cmd command
“pip install numpy” in their system (requires internet connectivity).

In some of the later projects where we would be also using other third-party libraries,
there would be some additional dependencies that we need to download/install. But for
the purpose of this chapter since we intend to write everything from scratch, we do not
have any other dependency. If the readers are more comfortable with Python 2.X, they
are welcome and encouraged to adapt the code for Python 2.X distribution.

As a good coding practice, we will be using separate python package for the
environment. A package could be imported in any other python project (assuming
no dependency incompatibilities/collisions), so using this approach we could use
this environment in many other projects as well. The package we are using to build
this environment is called “envs” and is in a subfolder in our python project.

There is a blank python file, named “__init__.py”, in the folder named “envs”.
The “__init__.py” is created in a folder to tell python that this is a sub-module root
folder. Whenever the interpreter encounters an import statement that tries to import
anything from the “envs” (name of the sub-module is the same as the name of the
folder) module, then it will be known that it should look into this folder for the
subsequent items in the import statements in sequence. The project structure is as
shown in Fig. 3.2 below.

We would strive to have all the different environments in the project in their
dedicated Python class, and we would preferably have them in their dedicated “.py”
file. The agent is in the base project folder and is implemented in its own class in a
dedicated “.py” file. Each class file has a “if __name__ == ‘__main__’ section” which
has the code for debugging/testing the respective classes and is invoked only when
that particular “.py” file is run as the main file. So, for example, if the solver’s “.py”
file imports the environment from the env’s “.py” file and uses its contents, the test
code written below the “if __name__…” section of the env’s “.py” file is not invoked.

Next, we will be listing the code for the environment, which is common for both the
solution implementations. After that, we will present the two approaches, i.e., the value
iteration and policy iteration, that will use this environment to solve the Grid World.

Fig. 3.2 Project folder
structure

3.3 Platform Requirements and Project Structure … 35



Readers are encouraged to browse through the code and the structure of the
classes, and try to reason-out the purpose of each instance variable and method on
their own, before going through the explanation. It would also be a good exercise to
think about the sequence of calls as per the explanation for the value iteration and
policy iteration approaches as given in the last chapter before seeing the actual
invocation sequence.

3.4 Code for Creating the Grid-World Environment

This code is in a file called “gridworld.py” under the folder (/sub-module) “envs” in
the main project folder.

"""Grid World Environment
Custom Environment for the GridWorld Problem as in the book Deep Reinforce-
ment Learning, Chapter 2.

Runtime: Python 3.6.5
Dependencies: None
DocStrings: NumpyStyle

Author : Mohit Sewak (p20150023@goa-bits-pilani.ac.in)
"""

class GridWorldEnv(): 
"""Grid-World Environment Class
"""
def __init__(self, gridsize=7, startState='00', terminalStates=['64'], ditches=['52'],

ditchPenalty = -10, turnPenalty = -1, winReward= 100, 
mode = 'prod'): 

"""Initialize an instance of Grid-World environment

Parameters 
----------- 
gridsize : int

The size of the (square) grid n x n.
startState : str

The entry point for the game in terms of coordinates as string.
terminalStates : str

The goal/ terminal state for the game in terms of coordinates as string.
        ditches : list(str)

A list of ditches/ penalty-spots. Each element coded as str of coordinates.
ditchPenalty : int

A Negative Reward for arriving at any of the ditch cell as in ditches
parameter.

turnPenalty : int
A Negative Reward for every turn to ensure that agent completes the epi-

sode in minimum number of turns.
winReward : int

            A Negative Reward for reaching the goal/ terminal state. 
mode : str

Mode (prod/debug) indicating the run mode. Effects the information/ ver-
bosity of messages.

36 3 Coding the Environment and MDP Solution



Examples
-------- 
env = GridWorldEnv(mode='debug')

"""
self.mode = mode
self.gridsize = min(gridsize,9) 
self.create_statespace()
self.actionspace = [0,1,2,3] 
self.actionDict = {0:'UP', 1:'DOWN', 2:'LEFT', 3:'RIGHT'} 
self.startState = startState
self.terminalStates = terminalStates
self.ditches = ditches
self.winReward = winReward
self.ditchPenalty = ditchPenalty
self.turnPenalty = turnPenalty
self.stateCount = self.get_statespace_len()
self.actionCount = self.get_actionspace_len()
self.stateDict = {k:v for k,v in zip(self.statespace,range(self.stateCount))}
self.currentState = self.startState

if self.mode == 'debug': 
print("State Space", self.statespace)
print("State Dict", self.stateDict)
print("Action Space", self.actionspace)
print("Action Dict", self.actionDict)
print("Start State",self.startState)
print("Termninal States",self.terminalStates)
print("Ditches", self.ditches)
print("WinReward:{}, TurnPenalty:{}, DitchPenalty:{}"

.format(self.winReward,self.turnPenalty,self.ditchPenalty))

def create_statespace(self):
"""Create Statespace

Makes the grid worl space with as many grid-cells as requested during in-
stantiation gridsize parameter.

"""
self.statespace = []
for row in range(self.gridsize): 

for col in range(self.gridsize): 
self.statespace.append(str(row)+str(col)) 

def set_mode(self,mode):
self.mode = mode

def get_statespace(self): 
return self.statespace

def get_actionspace(self): 

3.4 Code for Creating the Grid-World Environment 37



return self.actionspace

def get_actiondict(self): 
return self.actionDict

def get_statespace_len(self): 
return len(self.statespace)

def get_actionspace_len(self): 
return len(self.actionspace)

def next_state(self, current_state, action):
"""Next State

Determines the next state, given the current state and action as per the 
game rule.

Parameters 
---------- 
current_state : (int, int)

A tuple of current state coordinate
action : int

Action index

Returns
------- 
str 

New state coded as str of coordinates

"""
s_row = int(current_state[0])
s_col = int(current_state[1])
next_row = s_row
next_col = s_col
if action == 0: next_row = max(0,s_row - 1) 
if action == 1: next_row = min (self.gridsize-1, s_row+1) 
if action == 2: next_col = max(0,s_col - 1) 
if action == 3: next_col = min(self.gridsize - 1, s_col+1) 

new_state = str(next_row)+str(next_col)
if new_state in self.statespace:

if new_state in self.terminalStates: self.isGameEnd = True
if self.mode=='debug': 

print("CurrentState:{}, Action:{}, NextState:{}"
.format(current_state,action,new_state))

return new_state
else: 

return current_state

def compute_reward(self, state):
"""Compute Reward

38 3 Coding the Environment and MDP Solution



Computes the reward for arriving at a given state based on ditches, and 
goals as requested during instatiations.

Parameters 
---------- 
state : str

Current state in coordinates coded as single str

Returns
------- 
float

reward corresponding to the entered state

"""
reward = 0 
reward += self.turnPenalty
if state in self.ditches: reward += self.ditchPenalty
if state in self.terminalStates: reward += self.winReward
return reward 

def reset(self): 
"""reset

Resets the environment. Required in gym standard format.

Returns
------- 
str 

A string representing the reset state, i.e. the entry point for the agent at 
start of game.

Examples
-------- 
env.reset()

"""
self.isGameEnd = False
self.totalAccumulatedReward = 0 
self.totalTurns = 0 
self.currentState = self.startState
return self.currentState

def step(self,action):
"""step

Takes a step corresponding to the action suggested. Required in gym 
standard format.

Parameters 
---------- 

3.4 Code for Creating the Grid-World Environment 39



action : int
Index of the action taken

Returns
------- 
tuple

A tuple of (next_state, instantaneous_reward, done_flag, info)

Examples
-------- 
observation_tuple = env.step(1)
next_state, reward, done, _ = env.step(2)

"""
if self.isGameEnd:

raise ('Game is Over Exception') 
if action not in self.actionspace:

raise ('Invalid Action Exception') 
self.currentState = self.next_state(self.currentState, action)
obs = self.currentState
reward = self.compute_reward(obs)
done = self.isGameEnd
self.totalTurns += 1 
if self.mode == 'debug': 

print("Obs:{}, Reward:{}, Done:{}, TotalTurns:{}"
.format(obs, reward, done, self.totalTurns))

return obs, reward, done, self.totalTurns

if __name__ == '__main__': 
"""Main function

Main function to test the code and show an example.
"""
env = GridWorldEnv(mode='debug') 
print("Reseting Env...") 
env.reset()
print("Go DOWN...") 
env.step(1) 
print("Go RIGHT...") 
env.step(3) 
print("Go LEFT...") 
env.step(2) 
print("Go UP...") 
env.step(0) 
print("Invalid ACTION...") 
# env.step(4)

40 3 Coding the Environment and MDP Solution



3.5 Code for the Value Iteration Approach of Solving
the Grid-World

This code is in a file named “valueiteration_gridworld.py” under the main project
folder.

"""Value Iteration Algorithm
Code to demonstrate the Value Iteration method for solving Grid World

Runtime: Python 3.6.5
Dependencies: numpy
DocStrings: NumpyStyle

Author : Mohit Sewak (p20150023@goa-bits-pilani.ac.in)
"""

from envs.gridworld import GridWorldEnv
import numpy as np

class ValueIteration:
"""The Value Iteration Algorithm
"""
def __init__(self, env = GridWorldEnv(), discountingFactor = 0.9, 

convergenceThreshold = 1e-4, iterationThreshold = 1000, 
mode='prod'):

"""Initialize the ValueIteration Class

Parameters 
---------- 
env : (object)

An instance of environment type
discountingFactor : float

The discounting factor for future rewards
convergenceThreshold : float

Threshold value for determining convergence
iterationThreshold : int

The maximum number of iteration to check for convergence
mode : str

Mode (prod/debug) indicating the run mode. Effects the information/ ver-
bosity of messages.

Examples
-------- 
valueIteration = ValueIteration(env = GridWorldEnv(),mode='debug')

"""

3.5 Code for the Value Iteration Approach … 41



self.env = env
self.gamma = discountingFactor
self.th = convergenceThreshold
self.maxIter = iterationThreshold
self.stateCount = self.env.get_statespace_len()
self.actionCount = self.env.get_actionspace_len()
self.uniformActionProbability = 1.0/self.actionCount
self.stateDict = self.env.stateDict
self.actionDict = self.env.actionDict
self.mode = mode
self.stateCount = self.env.get_statespace_len()
self.V = np.zeros(self.stateCount)
self.Q = [np.zeros(self.actionCount) for s in range(self.stateCount)]
self.Policy = np.zeros(self.stateCount)
self.totalReward = 0 
self.totalSteps = 0 

def reset_episode(self): 
"""Resets the episode
"""
self.totalReward = 0 
self.totalSteps = 0 

def iterate_value(self): 
"""Iterates value and check for convergence
"""
self.V = np.zeros(self.stateCount)
for i in range(self.maxIter): 

last_V = np.copy(self.V) 
for state_index in range(self.stateCount):

current_state = self.env.statespace[state_index]
for action in self.env.actionspace:

next_state = self.env.next_state(current_state,action)
reward = self.env.compute_reward(next_state)
next_state_index = self.env.stateDict[next_state]
self.Q[state_index][action] = reward + 

self.gamma*last_V[next_state_index]
if self.mode == 'debug': 

print("Q(s={}):{}".format(current_state,self.Q[state_index]))
self.V[state_index] = max(self.Q[state_index])

if np.sum(np.fabs(last_V - self.V)) <= self.th:
print ("Convergene Achieved in {}th iteration. "

"Breaking V_Iteration loop!".format(i)) 
break

def extract_optimal_policy(self): 
"""Determines the best action(Policy) for any state-action
"""
self.Policy = np.argmax(self.Q, axis=1) 
if self.mode == 'debug': 

print("Optimal Policy:",self.Policy)

42 3 Coding the Environment and MDP Solution



def run_episode(self): 
"""Starts and runs a new episode

Returns
------- 
float:

Total episode reward
"""
self.reset_episode()
obs = self.env.reset()
while True: 

action = self.Policy[self.env.stateDict[obs]]
new_obs, reward, done, _ = self.env.step(action)
if self.mode=='debug': 

print("PrevObs:{}, Action:{}, Obs:{}, Reward:{}, Done:{}"
.format(obs, action, new_obs,reward,done))

self.totalReward += reward
self.totalSteps += 1 
if done:

break
else: 

obs = new_obs
return self.totalReward

def evaluate_policy(self, n_episodes = 100): 
"""Evaluates the goodness(mean score across different episodes) as per a 

policy

Returns
------- 
float:

            Policy score

"""
episode_scores = []
if self.mode=='debug':print("Running {} episodes!".format(n_episodes))
for e,episode in enumerate(range(n_episodes)): 

            score = self.run_episode()
episode_scores.append(score)
if self.mode == 'debug': print("Score in {} episode = {}".format(e,score)) 

return np.mean(episode_scores)

def solve_mdp(self, n_episode=100): 
"""Solves an MDP (a reinforcement learning environment)

Returns
------- 
float:

The best/ converged policy score
"""

3.5 Code for the Value Iteration Approach … 43



if self.mode == 'debug': 
print("Iterating Values...") 

self.iterate_value()
if self.mode == 'debug': 

print("Extracting Optimal Policy...") 
self.extract_optimal_policy()

if self.mode == 'debug': 
print("Scoring Policy...") 

return self.evaluate_policy(n_episode)

if __name__ == '__main__': 
"""Main function

Main function to test the code and show an example.
"""
print("Initializing variables and setting environment...") 
valueIteration = ValueIteration(env = GridWorldEnv(),mode='debug') 
print('Policy Evaluation Score = ', valueIteration.solve_mdp())

3.6 Code for the Policy Iteration Approach of Solving
the Grid-World

This code is in a file named “policyiteration_gridworld.py” under the main project
folder. We have used dedicated projects for value iteration and policy iteration
examples, but you could also have these files in the same project.

44 3 Coding the Environment and MDP Solution



"""Policy Iteration Algorithm
Code to demonstrate the Policy Iteration method for solving Grid World

Runtime: Python 3.6.5
Dependencies: numpy
DocStrings: NumpyStyle

Author : Mohit Sewak (p20150023@goa-bits-pilani.ac.in)
"""

from envs.gridworld import GridWorldEnv
import numpy as np

class PolicyIteration:
"""Policy Iteration Algorithm
"""
def __init__(self, env = GridWorldEnv(), discountingFactor = 0.9, 

convergenceThreshold = 1e-4, 
iterationThresholdValue = 1000, 
iterationThresholdPolicy = 100, 
mode='prod'):

"""Initialize the PolicyIteration Class

Parameters 
---------- 
env : (object)

An instance of environment type
discountingFactor : float

The discounting factor for future rewards
convergenceThreshold : float

Threshold value for determining convergence
iterationThresholdValue : int

The maximum number of iteration to check for convergence of value
iterationThresholdPolicy:

The maximum number of iteration to check for convergence of policy
mode : str

Mode (prod/debug) indicating the run mode. Effects the information/ ver-
bosity of messages.

3.6 Code for the Policy Iteration Approach … 45



Examples
-------- 
policyIteration = PolicyIteration(env = GridWorldEnv(),mode='debug')

"""
self.env = env
self.gamma = discountingFactor
self.th = convergenceThreshold
self.maxIterValue = iterationThresholdValue
self.maxIterPolicy = iterationThresholdPolicy
self.stateCount = self.env.get_statespace_len()
self.actionCount = self.env.get_actionspace_len()
self.uniformActionProbability = 1.0/self.actionCount
self.stateDict = env.stateDict
self.actionDict = env.actionDict
self.mode = mode
self.stateCount = self.env.get_statespace_len()
self.V = np.zeros(self.stateCount)
self.Q = [np.zeros(self.actionCount) for s in range(self.stateCount)]
self.Policy = np.zeros(self.stateCount)
self.totalReward = 0 
self.totalSteps = 0 

def reset_episode(self): 
"""Resets the episode
"""
self.totalReward = 0 
self.totalSteps = 0 

def compute_value_under_policy(self): 
self.V = np.zeros(self.stateCount)
for i in range(self.maxIterValue):

last_V = np.copy(self.V) 
for state_index in range(self.stateCount):

current_state = self.env.statespace[state_index]
for action in self.env.actionspace:

next_state = self.env.next_state(current_state,action)
reward = self.env.compute_reward(next_state)
next_state_index = self.env.stateDict[next_state]
self.Q[state_index][action] = reward + 

self.gamma*last_V[next_state_index]
if self.mode == 'debug': 

print("Q(s={}):{}".format(current_state,self.Q[state_index]))
self.V[state_index] = max(self.Q[state_index])

if np.sum(np.fabs(last_V - self.V)) <= self.th:
print ("Convergene Achieved in {}th iteration. "

"Breaking V_Iteration loop!".format(i)) 
break

def iterate_policy(self): 
"""Iterates over different (updated) policies

46 3 Coding the Environment and MDP Solution



Returns
------- 
list

A list of int with each element representing the action index in that state
"""
self.Policy = [np.random.choice(self.actionCount) for s in 

range(self.stateCount)]
for i in range(self.maxIterPolicy): 

self.compute_value_under_policy()
old_policy = self.Policy
self.improve_policy()
new_policy = self.Policy
if np.all(old_policy == new_policy):

print('Policy Convergence achieved in step ',i)
break

self.Policy = new_policy
return self.Policy

def improve_policy(self): 
"""Improves a policy
Improves a policy by setting action for any state that gives the best Q value in 

that state
"""
self.Policy = np.argmax(self.Q, axis=1) 
if self.mode == 'debug': 

print("Optimal Policy:",self.Policy)

def run_episode(self): 
"""Starts and runs a new episode

Returns
------- 
float:

Total episode reward
"""
self.reset_episode()
obs = self.env.reset()
while True: 

action = self.Policy[self.env.stateDict[obs]]
new_obs, reward, done, _ = self.env.step(action)
if self.mode=='debug': 

print("PrevObs:{}, Action:{}, Obs:{}, Reward:{}, Done:{}"
.format(obs, action, new_obs,reward,done))

self.totalReward += reward
self.totalSteps += 1 
if done:

break
else: 

obs = new_obs
return self.totalReward

3.6 Code for the Policy Iteration Approach … 47



def evaluate_policy(self, n_episodes = 100): 
"""evaluate a policy

Parameters 
---------- 
n_episodes : int

Max episodes to evaluate policy

Returns
------- 
float

The policy score

"""
episode_scores = []
if self.mode == 'debug': print("Running {} episodes!".format(n_episodes))
for e,episode in enumerate(range(n_episodes)): 

            score = self.run_episode()
episode_scores.append(score)
if self.mode == 'debug': print("Score in {} episode = {}".format(e,score)) 

return np.mean(episode_scores)

def solve_mdp(self, n_episode=10): 
"""Solves an MDP (a reinforcement learning environment)

Returns
------- 
float:

The best/ converged policy score
"""
if self.mode == 'debug': 

print("Initializing variables and setting environment...") 
self.iterate_policy()

if self.mode == 'debug': 
print("Scoring Policy...") 

return self.evaluate_policy(n_episode)

if __name__ == '__main__': 
"""Main function

Main function to test the code and show an example.
"""
print("Initializing variables and setting environment...") 
policyIteration = PolicyIteration(env = GridWorldEnv(),mode='debug') 
print('Policy Evaluation Score = ', policyIteration.solve_mdp())

48 3 Coding the Environment and MDP Solution



3.7 Summary

This book aims to enable users to implement (Deep) Reinforcement Learning in
their respective domains. The logical step to do this is to first understand the theory
and mathematics behind the Reinforcement Learning and then to learn to code them
effectively. Before we discuss the theory on Deep Learning and some Deep
Learning Reinforcement Learning agents, we introduced this chapter so that the
readers could start putting to practice what they have already learnt. We did not
introduce the deep part of the Deep Reinforcement Learning to code as of now, but
otherwise we implemented most of the pieces we would require to implement a
Reinforcement Learning agent.

Besides coding the “Value Iteration” and “Policy Iteration”-based agents for
Reinforcement Learning, the most important aspect we covered in this chapter is
understanding the Reinforcement Learning environment and coding it in from
scratch in such a manner that it could be used by our custom agent and standard
Reinforcement Learning agents available from different popular Reinforcement
Learning libraries alike. We took this important decision to code a custom envi-
ronment instead of just extending an existing environment because not only it
uncovers the building blocks of the Reinforcement Learning’s environment but also
enables us with the required capability to code the environment for our respective
domains.

3.7 Summary 49



Chapter 4
Temporal Difference Learning, SARSA,
and Q-Learning

Some Popular Value Approximation Based
Reinforcement Learning Approaches

Abstract In this chapter, we will discuss the very important Q-Learning algorithm
which is the basis of Deep Q Networks (DQN) that we will discuss in later chapters.
Q-Learning serves to provide solutions for the control side of the problem in
Reinforcement Learning and leaves the estimation side of the problem to the
Temporal Difference Learning algorithm. Q-Learning provides the control solution
in an off-policy approach. The counterpart SARSA algorithm also uses TD
Learning for estimation but provides the solution to the control problem in an
on-policy manner. In this chapter, we cover the important concepts of the TD
Learning, SARSA, and Q-Learning. Also, since Q-Learning is an off-policy algo-
rithm, so it uses different mechanisms for the behavior as opposed to the estimation
policy. So, we will also cover the epsilon-greedy and some other similar algorithms
that can help us explore the different actions in an off-policy approach.

4.1 Challenges with Classical DP

Until now, approaches like value iteration and policy-iteration that we studied to
solve the MDP are typically called the “Classical Dynamic Programming” or
“Classical DP”, and are not exactly considered as modern Reinforcement Learning
based solutions. Though Classical DP is very important to understand theoretically
as we highlighted earlier, there are some drawbacks with. Some drawbacks are as
we highlighted in the respective sections of value-iteration and Policy-Iterations
sections are that they are computationally very expensive, and could work with
limited discrete actions, or limited state size, etc.

Besides the computational complexity, what makes it challenging to implement
these approaches in practical application is that of their underlying assumption of a
“model”. The use of the term “model” in Reinforcement Learning has a special
reference. Generally, we refer to the term “model” to refer to the machine-learning
or supervised-learning models like neural-networks, decision-trees, SVMs,

© Springer Nature Singapore Pte Ltd. 2019
M. Sewak, Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-13-8285-7_4

51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_4&amp;domain=pdf
https://doi.org/10.1007/978-981-13-8285-7_4


deep-learning models, etc. But the term “model” in Reinforcement Learning has a
different meaning as we will understand in the next section.

The machine-learning or supervised-learning models (like SVM, neural-
networksfunction-approximators, ANN, DNN, CNN, MLP, etc.), are instead
referred to in Reinforcement Learning as “function-approximators”. But to make
the discussion clearer, beyond this chapter, we will continue to use the “model”
terminology even for the supervised-learning models and refer to the
statistical-model as for the purpose of “modeling the MDP” as “MDP model”. The
“MDP model” terminology is not standard as per the literature on reinforcement
learning, but to avoid any confusion between machine-learning models (which we
will refer to as model beyond this chapter), we will use this terminology in this
book.

For Classical DP to work well and to solve the MDP effectively, it requires to
perfectly “model” the environment of the MDP to compute optimal policies. As we
discovered earlier, the value-iteration and Policy-Iteration had to understand the
environment completely by exploring all the possible actions in all the possible
states. Then these algorithm computes the value of each of the possible combination
to solve the MDP. But in real life, especially with sizable states and actions
combinations, it will be next to impossible to know all these combinations and
compute the value of each of these combinations to train the agent. Therefore, in
this chapter, we will go beyond the classical DP approaches and learn some more
modern and Classical Reinforcement Learning (note the difference in terminology
shifting from Classical Dynamic Programming to Classical Reinforcement
Learning for non-Dynamic Programming based approaches) algorithms as well.

Since our focus is to move quickly to Deep Reinforcement Learning approaches,
we would not be able to cover an exhaustive list of “Classical Reinforcement
Learning”, or “Classical RL” or non-deep-learning based Reinforcement Learning
approaches; but nevertheless, we would cover the important ones, the under-
standing of which would also be required to understand the Deep-Learning based
Reinforcement Learning approaches.

4.2 Model-Based and Model-Free Approaches

As we discussed in the last section, the term “model” in Reinforcement Learning is
used to mean the “model” of the MDP. That is understanding the MDP so as to
have/generate a “model” of the state-transition probabilities (probability of going
from state—s to a new state—s′ on taking an action a) and action probabilities for
the given MDP. Any approach that relies on making/understanding the “model” of
the MDP to work is called a “model-based” approach. On the contrary, the
approaches that do not use or require to know this “model” (of the MDP) to work
are called “model-free” approaches.

52 4 Temporal Difference Learning, SARSA, and Q-Learning



“Model-based” approaches require a prior understanding of the “model” to
suggest the optimal policy, and to understand this “model” they need the avail-
ability of exhaustive data (assuming the learning is happening from data samples) to
“model” the MDP effectively. Hence such approaches are generally not used in an
online manner where the agent learns and recommend actions in real-time or on
mini-batch feeds of data. There are some hybrid approaches also possible. In such
hybrid approaches, the “model” is learned from the existing data samples, and then
the so trained “model” in “offline” mode is used in an “online” approach, probably
with some incremental improvement/learning loops as well.

Model-based approaches are not just limited to Classical Dynamic
Programming. In Classical Reinforcement Learning as well there are some very
popular model-based approaches. One of the very popular, and important to
understand model-based Reinforcement Learning approach is the Temporal
Difference (TD) Learning, which is also sometime called Temporal Difference
Model (TDM) due to the “model-based” approach that it follows.

In this chapter, we will cover Temporal Difference (TD) Learning, which is a
“model-based” approach, and two model-free approaches, namely the “Q-Learning”
and the “SARSA”. With reference to our discussion on “On-Policy” and
“Off-Policy” approaches in Chap. 2, it is worth noting that of the two model-free
approaches that we will be covering, Q-Learning is an “Off-Policy”, “model-free”
approach and SARSA in an “On-Policy”, “model-free” approach.

4.3 Temporal Difference (TD) Learning

While discussing the disadvantage of Dynamic Programming based methods we
discussed that such methods need a perfect knowledge of the “model”
(MDP-model) to work and cannot use “experience” to compensate for any lack of
prior knowledge of the “model” (or lack of data). There is yet another technique in
non-Reinforcement-Learning (non-RL) methods called the “Monte Carlo
Simulation”, which is at the exact opposite end of the spectrum and it uses mostly
experience and could not use “knowledge” (or prior data) directly (though it uses
historical data to abstract distributions from it which could serve as experience) to
solve the MDP. MC (for Monte Carlo) Simulation, tries to understand the under-
lying distribution of the data (of each variable and their covariance with other
variables), and then it could create new data by generating samples from the
abstracted distributions. This is similar to the role of “experience” in humans. We
use the memories/experience of the past, to make informed assumptions of what the
future could likely be.

Though Monte Carlo Simulation based approach looks good theoretically, it has
a disadvantage of having to wait for the completion of all (or a large number of) the
episodes to gather the underlying distributions/experiences for it to work. TD (for

4.2 Model-Based and Model-Free Approaches 53



Temporal Difference) Learning does a good balance between the Dynamic
Programming based approaches of requiring “no-experience” and Monte Carlo
based approaches of using “only-experience”. TD (0) a variant of the TD learning
approach is a fully “online” (here online refers to the ability of incrementally
updating the learning in real-time) “bootstrapping” (in statistics bootstrapping
refers to the technique of picking samples from a data with “replacement” to update
statics of the population) technique and can continuously update the values even
during an episode.

In case if the reader failed to understand the significance of the above-stated
advantages in real-life applications, let us for a moment step back to walk through
some of the great benefits of alleviating the bottlenecks of offline learning (or
requiring to wait for the episode to end to update the learning). If we do not have to
wait for the episode to end to update the values, then that implies that this technique
could also be employed into scenarios with very long episodes. Imagine a
self-driving car for inter-state services!

Another extension of this bottleneck is that for “continuous-tasks” which are
essentially “non-episodic” tasks (or tasks where a single episode runs into infinite
steps). In the paradigm of episodes, “continuous-tasks” are equivalent to a single
episode that does not ever end. Imagine a continuous running robotic
assemble-line!

There are other variants of TD Learning as well, like the TD (1), and the more
generalist TD (k) (pronounced TD Lambda). But in this section, we will cover the
TD (0) variant only. But before that we will briefly discuss about the role of TD,
SARSA and Q-Learning in terms of Reinforcement Learning problems.

4.3.1 Estimation and Control Problems of Reinforcement
Learning

For an agent that acts on the basis of value functions optimization/maximization,
the problem could be broken down into two sub-problems. The first is the
“Estimation” sub-problem which is “estimating” (as opposed to “computing” that
what we did in the case of Classical Dynamic Programming exercise) the value
function (given a “policy”), and subsequently the second is the “Control”
sub-problem, which is acting or taking or recommending actions corresponding to a
given current state. The “control” problem may use the outcomes of the “estima-
tion” problem as inputs along with other mechanisms/algorithms to determine/
recommend the best possible next action.

TD (0) essentially gives a good approach for the “estimation” part of the
problem. For the “control” we can use either the SARSA or Q-Learning methods
that we will be covering next.

54 4 Temporal Difference Learning, SARSA, and Q-Learning



4.3.2 TD (0)

TD (0) is the simplest Temporal Difference Learning algorithm that “estimates” the
“value function” of a finite (MDP) under a given “policy” p(s). In Chap. 2, Eqs. (2.2)–
(2.3), we discussed one variant of Bellman Equation for value-function which was
based on expectancy of total rewards, as given below:

VpðsÞ ¼ Ep Rtjst¼s

h i
ð4:1Þ

This was further shown to be expanded to include the future discounted rewards
as:

VpðsÞ ¼ Ep

X1
i¼0

ciRaðtþ iÞ ðsðtþ iÞ; sðtþ iþ 1ÞÞ
" #

ð4:2Þ

Another way the above equation could be represented in the form of just two
consecutive steps is as follows:

VpðsÞ ¼ Ep r0 þ cVpðs1Þjs0¼s

h i
ð4:3Þ

In this Eq. (4.3), r0 þ cVpðs1Þ is the unbiased estimate of VpðsÞ. These could be
updated, and all subsequent estimates revised in a tabular format. Owing to this
capability of being updated directly in a tabular format TD (0) is also known to be a
tabular approach. The initial value-function-table (as in table used in the tabular
approach) could be initialized arbitrarily and later revised with each step (not just
each episode). The “policy” under which this value-function-table is “estimated” or
updated is “evaluated” (In policy-iteration we discussed the two required repetitive
steps, i.e., of policy-evaluation and policy-improvement, we use only the policy
“evaluation” step here). During “evaluation”, we may get new rewards (r), and with
every step the value-function/table is updated as per the below equation:

VðsÞ ¼ VðsÞ þ aðrþ cVðs0Þ � VðsÞÞ ð4:4Þ

where the symbol “a” (alpha) here is the learning rate, s is the previous state before
the action and s′ is the new state after the cation.

The Eq. (4.4) essentially suggests that the value of a particular state (s) in the
value-function, could be updated in each step such that it is equal to the previous
value of that state plus the learning rate times any difference between the new “TD
target” for the state (that is the term r + cV(s′) and the previous value of the same
state. The new “TD target” for the current state V(s) is the instantaneous reward
received in this step plus the discounted value of the immediate next step. At times
the “TD target” of a state during such updated may vary significantly from the

4.3 Temporal Difference (TD) Learning 55



previous value of that state. This may even be because of noise in the data. Such
large divergence between the “TD target” and present value of the current state in a
single iteration may affect convergence and may warrant smoothening. The addition
of learning rate in the equation provides this required smoothening effect and also
prevents few noisy data instances from adversely affecting the learning largely.

4.3.3 TD (k) and Eligibility Trace

Temporal Difference Lambda or TD (k) is a popular variant of the Temporal
Difference (TD) Learning. So, we will cover this briefly here for the purpose of
intuition without going into great details of the same. In TD (0) we saw that the
value in any given value-update iteration is equal to the instantaneous reward in that
step plus the discounted value of only the state in the very next step. By including
only, the very next step in the value computation we assumed that the difference in
value targets for any state in a given step is only a function of the last step’s state in
the sequence that the agent visited. For episodes or scenarios where sequence is of
importance, this may not be a very good assumption. The TD (k) algorithm alle-
viates this assumption of TD (0).

In TD (k) we can distribute the attribution of reward to different previous states
that the agent visited in sequence and hence the states in these steps were assum-
ingly responsible for this reward that the agent received in the current step in the
current value-update iteration. The proportion of credit attribution of rewards/value
to different previous states and actions is controlled by the parameter k, where k lies
between 0, and 1 (1 � k � 0). When k is set to 0, it behaves similar to a TD
(0) algorithm where we just take the instantaneous reward for the last step only,
whereas when k is set to 1 it gives an equal attribution of credit for rewards/value to
all previous states visited and actions taken. With k = 1, the algorithm behave
similar to how a Monte Carlo Simulation would work in an episode, i.e., by
averaging the reward across all states visited in that episode.

For any intermediary value of k, the attribution is weighted by kn, where n
denotes the number of steps prior to the last step that a state was visited by taking
the chosen action in the previous state. This approach is quite similar in intuition to
an approach in which one would wait for some number of steps (say i) before
making an update to see what all states the agent has visited. Under such condition
though we have decided that any reward attribution should happen only until i
previous states, but with TD (k) we could achieve this without exactly waiting for
the updates. Thus TD (k) could work under similar assumptions as Monte Carlo
Simulation even in a purely online scenario.

Such an approach to distribute the attribution of reward/penalty to different states
visited in previous steps is referred to as “Eligibility Traces”. That is to mean that
we would like to trace the eligibility of the attribution of rewards to previous
occurrences in the previous steps in the sequence of events. The k based approach
for implementing and managing (the proportion of attribution to different steps in

56 4 Temporal Difference Learning, SARSA, and Q-Learning



the past) “Eligibility Traces” is known as the “forward view”, whereas the other
approach mentioned in the example above, in which one would wait for certain
steps and then roll the attributions to previous steps after seeing the reward is
known as the “backward view” for implementing “Eligibility Traces”.

4.4 SARSA

The acronym SARSA stands for State-Action-Reward-State-Action, or to be more
precise in terms of steps, it stands for State(t)-Action(t)-Reward(t)-State(t+1)-
Action(t+1). It uses the same principal for value function (/ table) updates as what we
discussed in for the Temporal Difference learning and applies it to the action-value
function (also known as Q Function) updates. SARSA works on “control” side of
the problem. Given that the action-value function Q (s, a) works on a pair of state
and action, i.e., (s, a) or action when the agent is in a given state, the SARSA
acronym could be grouped as [(s, a), r, (s′, a′)], or further augmented by the correct
action-value notation Q as [Q (s, a), r, Q (s′, a′)].

From the above Q format depiction, it should be clear how SARSA updates the
Q function. SARSA updates the Q value of a given (s, a) combination, using the
instantaneous rewards that the agent receives in any step and the Q value of the
resulting state-action pair, i.e., (s′, a′). As in the case of TD (0), this iterative update
could be represented in the form of an equation as follows. The symbols a, c, s, s′,
etc. all have same meaning as we discussed in TD (0) section; that is a is the
learning rate, c is the discounting factor, s is the current state and s′ is the subse-
quent state when the agent takes an action—a in the state—s.

Qðs;aÞ ¼ Qðs;aÞ þ aðrþ cQðs0;a0Þ � Qðs;aÞÞ ð4:5Þ

Or

Qðs;aÞ ¼ ð1� aÞQðs;aÞ þ aðrþ cQðs0;a0ÞÞ ð4:6Þ

If the readers would have noticed carefully, Eq. (4.5) is exactly the same as
Eq. (4.4) in TD (0), except we have replaced the term V(s) with the term Q(s, a),
i.e., instead of updating the value function in an online manner, here we are
updating the action-value function or the Q Function.

As we mentioned in an earlier section with reference to the “on-policy”, and
“off-policy” differences the algorithms could be classified into one of these
depending upon whether the algorithm uses the same mechanism (policy) for taking
an action (behavior) and updating (estimating)/exploring the functions on the basis
of which the best action is determined or different mechanisms for both. SARSA
follows the same policy to take the actions that it uses to update the action-value
function. As we discussed in Chap. 2, such approaches which use the same policy

4.3 Temporal Difference (TD) Learning 57



for both their behavior and estimation are said to be “on-policy” learning algorithm.
Therefore, SARSA is an “on-policy” learning algorithm.

Unlike some of the other algorithms that we discussed earlier in which we could
have initialized the function being estimated (value function or Q function) ran-
domly while initiating the training, this is not done so in the case of SARSA. SARSA
being an “on-policy” learning algorithm, in it the actions are dependent on the
existing Q values. Therefore, a randomly assigned set of values could mean that
some Q (s, a) sequences have a relatively high initial values, and if the agent use that
as a criteria to decide its next action, then it may always keep following that par-
ticular sequence of actions, not giving an opportunity to visit (explore) other
state-action (s, a) pairs, and hence will not be able to update their respective Q
values. In other words, the agent would end up mostly exploiting the randomly
assigned sub-optimal Q function values instead of exploring all/most of the
state-action combinations and rightly estimating the values of each state-action (s, a)
to correctly update the Q function. Therefore, in SARSA, the initial Q value space is
initialized with a very low initial value, also known as “optimistic-initial-condition”.

4.5 Q-Learning

Like SARSA, Q-Learning also use Temporal Difference Learning (TD Learning)
for the estimation side of the problem. Also, like SARSA, Q-Learning provides
solution for the “control” part of the problem and tries to estimate the action-value/
Q Function to take the best possible action (this is called the “control”). So, the
estimation part for Q-Learning is similar to that of SARSA and it also updates the Q
Function iteratively in every step. Albeit, there is a slight change in the equations of
SARSA and Q-Learning as we will discuss later in this section. Q-Learning use the
(state-action-reward-state) tuples as experience to estimate the Q Function.

But unlike SARSA, Q-Learning is an “Off-Policy” approach and does not use
the Q Function to decide the behavior (or the policy to determine the next action).
Therefore, unlike SARSA, the initialization of the Q-Table/Variable could be done
using all zeros. This is because Q-Learning use another policy for behavior and a
zero initialization of Q-Table or the initial action-value function variables will not
create the convergence problem for the agent as we discussed in the earlier section
on SARSA. In fact an “Off-Policy” learner is said to be capable of learning a good
policy irrespective of the effectiveness of the estimation function because the
built-in exploration effect works in isolation from the estimation function.

So, Q-Learning in addition to the temporal difference learning’s action-value
(Q Function) estimation, will also require another policy to balance between the
“Explore” and “Exploit” trade-offs. In Chap. 1, we have discussed about the
“Explore vs Exploit dilemma”, and mentioned that the process of choosing an
action as recommended (as indicated by action corresponding to the argmax of the

58 4 Temporal Difference Learning, SARSA, and Q-Learning



value/action-value functions) by the Estimation Function is known as the “Exploit”
decision. Whereas using some other/additional mechanism to take similar decision
is known as the “Explore” decision. In “explore” phase the agents would like to
further explore the environment and probably also visit states or take actions or
estimate state action combinations that it otherwise could not have visited or taken
or explored because as per the estimated function going these would not have made
sense or does not have provided an optimal/argmax value that would have war-
ranted such behavior.

To understand Q-Learning in details first we will discuss the way the decision is
made in the “Exploit” as this is a dependent directly on the Estimated function (here
Q Function). It is because we have already been doing something similar in SARSA
and hence it could be easy to understand. But as we discussed in this section earlier,
the equation for the estimation/update of Q function is slightly different. This is
because now since we have a different mechanism for “exploration”, we want to
focus the Q function updates completely for the “exploit” part. So, instead take the
max of all the next Q (s′, a′) combinations possible from the next state—s′. That is
also the reason why instead of 5-element tuple combination (state, action,
reward-next-state, next action) as in SARSA, we would only require a 4-element
tuple (state, action, reward, next-state) as Q-Learning’s experience instance. The
equation for Q-Learning’s action-value function’s estimation/update is as follows:

Qðs;aÞ ¼ ð1� aÞQðs;aÞ þ aðrþ cmax
a0

Qðs0;a0ÞÞ ð4:7Þ

Note that the only difference between Eq. (4.7) used for Q-Learning, and the
Eq. (4.6) used for SARSA is that instead of taking the difference from the next
action-value, i.e., Q (s′, a′) value (where next a′ is known and is explicit) as in
SARSA, in Q-Learning all the possible Q (s′, a′) combinations for a given (nest)
state—s′ are evaluated and the max action-value out of these is considered. This in
turn means reflects the maximum value possible of the next state possible from any
action possible in that state. Hence this value is parametrized only as a function of
the state and not state-action combination. Thus, the last part of the tuple in
Q-Learning’s experience instance has only the state in it, unlike SARSA’s expe-
rience instance’s tuple which requires state-action combination.

Next, we will discuss the “Explore” phase in Q-Learning. In “explore” phase
mostly an action is chosen from the available action space for the given state based
on some chosen probability function. The decision between “Explore” and
“Exploit” happens stochastically and there are different algorithms to determine the
probability of being in “explore” vs. “exploit” phase. In the next section, we will
cover some of these algorithms. These class of algorithms sometimes are also
referred to as “Bandit Algorithms” inspired by the famous “Multi-Bandit
Algorithm” as used in “A/B Testing” scenarios.

4.5 Q-Learning 59



4.6 Algorithms for Deciding Between the “Explore”
and “Exploit” Probabilities (Bandit Algorithms)

4.6.1 Epsilon-Greedy (e-Greedy)

Epsilon-Greedy is the most popular and the simplest algorithm to strike the trade-off
between the “exploration” and “exploitation” phases. A constant “epsilon” (e),
which represents the probability with which the agent decides to “explore” in every
turn. So, for example, if the value of e = 0.1, then there is 10% probability in any
given turn that the agent will take a random action (explore), and 90% probability
that it will “exploit” the existing Q function estimates that greedily chooses the
action as per the best value estimates from the Q function as updated until that
iteration. Hence the name epsilon-greedy.

Note the emphasis on the adjectives “constant” for the epsilon, and “random” for
action choice during “exploration”. The choice of these two properties is what
changes across most of the algorithms in these class of algorithms that we will
discuss next. In “epsilon-greedy” as stated, the value of “epsilon” once chosen
remains constant for the behavior policy. The larger the “epsilon”, the greater the
number of times the agent is likely to “explore” random actions, and the smaller the
“epsilon” the greater the number of times the agent is likely to greedily “exploit”
the estimated value/Q function. So, the choice of “epsilon” should be based on the
“deterministic-ness” of the underlying Markov Decision Process (MDP). The more
“deterministic” the MDP is, the less it needs to be explored, and hence corre-
spondingly warranting a smaller value for the “epsilon”. Conversely, the more
“stochastic” the MDP is, the more it needs to be explored, and hence corre-
spondingly warranting a larger value for the “epsilon”. Hence, the required balance
between exploration vs exploitation requirements is the guiding principle to
determine the value of “epsilon” as shown in Fig. 4.1.

4.6.2 Time Adaptive “epsilon” Algorithms
(e.g., Annealing e)

As we discussed in the earlier section of basic epsilon-greedy, the value of epsilon
remains constant throughout the training process. We also discussed some heuristic
on how to choose a good value for epsilon based on the “deterministic-ness” of the
“stochastic” problem in hand (the underlying MDP). This heuristic is good while
comparing one Markov Decision Process to another. But while working upon a
given stochastic problem or MDP, the process will be less known in the beginning
and as we start exploring it will keep becoming more and more of charted territory.
Hence if the heuristic indicates a higher value of epsilon for a relatively less known
process and a lower value of epsilon for a relatively known process then intuitively
even the algorithm for a single MDP should have a higher epsilon (more

60 4 Temporal Difference Learning, SARSA, and Q-Learning



“exploration” opportunities) in the beginning, and a progressively lower epsilon
(enabling it to “exploit” more “greedy” options) as we keep gaining more infor-
mation about the environment.

Annealing Epsilon, Epsilon First, and Decreasing Epsilon are some of the
algorithms that decreases the epsilon as the training process with an intention to
reduce the convergence time and rely on more informed predictions as opposed to
random selections as we learn more about the process. We will not go into the
details of each of these algorithms individually, but just for the purpose of illus-
trating on how these algorithms work we will take the example of the “Annealing
Epsilon” algorithm.

Annealing Epsilon algorithm varies the epsilon (ɛ) with respect to time/steps as:

e¼ 1
log(time + cÞ ð4:8Þ

where, c is small constant of the order of 1e−7 to avoid divide by zero error (as log
1 = 0).

Fig. 4.1 Choosing the ideal epsilon for the problem

4.6 Algorithms for Deciding Between the “Explore” and “Exploit” … 61



4.6.3 Action Adaptive Epsilon Algorithms (e.g., Epsilon
Soft)

Another way to further balance between the probability of the “explore” and
“exploit” opportunities apart from the choice of epsilon is on the basis of the
number of actions available (that is the cardinality of the action space). Intuitively
the more the number of actions available in a domain/process, the more exploration
is warranted of that process, and vice versa. Epsilon soft does exactly that and even
for a chosen epsilon, varies the “explore” probability in a given state on the basis of
actions available for that state as:

Pexplore ¼ e
Asj j ð4:9Þ

4.6.4 Value Adaptive Epsilon Algorithms (e.g., VDBE Based
e-Greedy)

Depending upon the stochastics of the underlying Markov Decision Process
environment and the effectiveness of the policy, the estimation of different value
functions may take varying times to converge, and hence instead of varying the
epsilon with respect to time, it may be more intuitive to vary the epsilon with
respect to the error in the estimation function (like the Q function in case of
Q-Learning). The greater the delta change during the update of the estimation
function from one iteration to another, the larger should be the “explore” oppor-
tunity in the subsequent iterations and hence the larger should be the value of
“epsilon”.

“VDBE” or “Value Difference Based Exploration“ adaptive e-greedy algorithm
achieves exactly that the above state objective and varies the value of epsilon (e) on
the basis of the change in estimated values in each step such as:

eðtþ 1ÞðsÞ ¼ df ðst; at; rÞþ ð1� dÞeðtÞðsÞ ð4:10Þ

where d is the parameter that determines the influence of the selected action on the
exploration rate and is selected similar to Eq. (4.9) above as in the case of action
adaptive method, and r is a positive constant called “inverse sensitivity”.

4.6.5 Which Bandit Algorithm Should We Use?

There are many advantages over the basic epsilon-greedy algorithm that the other
variants as discussed earlier offers. Any of the above algorithm (or different variants

62 4 Temporal Difference Learning, SARSA, and Q-Learning



under the variant types) could be chosen to answer the specific challenges that the
underlying the domain, or the training of the model or its subsequent usage poses.
But the disadvantage with the subsequently discussed variants is that these are
slightly more complex, requires optimization of a much larger number of param-
eters as compared to epsilon alone in the case of the basic epsilon-greedy variant,
and at times the specific algorithm variant may even call for storing the values
during the estimation process to work well. All these factors increase the com-
plexity of the behavior policy even further.

In most of the scenarios, it is observed that by carefully hand tuning the value of
a single parameter “epsilon” in the case of the basic epsilon-greedy algorithm,
optimal results could be achieved. So, in the examples in this book, we will use the
basic epsilon-greedy algorithm alone with specific choice of the epsilon parameter.

4.7 Summary

Moving beyond the classical approaches of computation of value function(s), in this
chapter, we discussed the more practical approach of estimating the value function
(s) and entered the modern Reinforcement Learning paradigm. Unlike the com-
putational paradigm where everything was known and hence the behavior could be
modeled accordingly, in the more practical paradigm, we divided the
Reinforcement Learning problem into that of the estimation and the control
problems.

The temporal difference algorithm provides an online mechanism for the esti-
mation problem. temporal difference could be adaptive to be used in an approach
which is either similar to dynamic programming or the Monte Carlo simulation or
anything in between. Also, since it is a forward-looking mechanism, these varia-
tions could provide a similar result as in the case of dynamic programming or
Monte Carlo simulation even in a true online environment and for non-episodic
MDPs.

SARSA and the Q-Learning provides the solution for the control side of the
problem in non-classical Reinforcement Learning. SARSA is an on-policy
approaches and uses the same policy for behavior and for estimation and
requires careful selection of initialization values to avoid possible drawbacks,
Q-Learning, on the other hand, is an off-policy algorithm and uses another policy to
determine the explore vs exploit decision balance for it. Epsilon-greedy and many
other advanced algorithms exist to help here. The advanced variants could
dynamically vary the explore-exploit balance for more optimal results but may
require correspondingly higher overheads to implement.

4.6 Algorithms for Deciding Between the “Explore” and “Exploit” … 63



Chapter 5
Q-Learning in Code

Coding the Off-Policy Q-Learning Agent and
Behavior Policy

Abstract In this chapter, we would put what we have learnt on Q-Learning in the
last chapter in code. We would implement a Q-Table-based Off-Policy Q-Learning
agent class, and to complement with a behavior policy, we would implement
another class on Behavior Policy with an implementation of the epsilon-greedy
algorithm.

5.1 Project Structure and Dependencies

For Q-Learning as well, we will use the “Grid World” Environment we created for
the Value/Policy Iteration code as in Chap. 2 earlier. So, we will import the
environment from the gridworld.py under the “envs” folder.

Besides we will use a virtual environment, which we are calling DRL and is
based on Python 3.6.5 runtime. We have used “miniconda” to create this envi-
ronment. This could be created by the shell/cmd command “conda create -n DRL
python=3.6”, and then activated as “source activate DRL” (for Windows, the
command is only “activate DRL”). The project structure and the requirements.txt
(dependencies) are shown in Figs. 5.1 and 5.2 respectively.

The requireents.txt contains the external library dependencies, which is “numpy”
and “matplotlib” (optional for plotting). This could be installed from pip package
using command “pip install <dependency>”. Alternatively, an IDE like pycharm
will prompt to automatically install the libraries scanning the requirements.txt. To
activate the DRL virtual environment in pycharm, goto settings->project_
interpreter->add new, and then select the Python file from the bin folder of your
virtual environment. In case of miniconda/anaconda the envs folder’s default
location is <user_dir>/miniconda/envs/<env_name=DRL>/bin.

© Springer Nature Singapore Pte Ltd. 2019
M. Sewak, Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-13-8285-7_5

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_5&amp;domain=pdf
https://doi.org/10.1007/978-981-13-8285-7_5


Fig. 5.1 Code project structure

Fig. 5.2 Requirements.txt contents

66 5 Q-Learning in Code



5.2 Code

""" Q Learning in Code

Q Learning Code (on custom environment as created in Chapter 2) as in the book 
Deep Reinforcement Learning, Chapter 5.

Runtime: Python 3.6.5
Dependencies: numpy, matplotlib (optional for plotting, else the plotting function 
can be commented)
DocStrings: GoogleStyle

Author : Mohit Sewak (p20150023@goa-bits-pilani.ac.in)

"""

5.2.1 Imports and Logging (file Q_Lerning.py)

#including necessary imports
import logging
import numpy as np
from itertools import count
import matplotlib.pyplot as plt
# import custom exceptions that we coded to receive for more meaningful messag-
es
from rl_exceptions import PolicyDoesNotExistException
# Import the custom environment we built in Chapter 02. We will use the same en-
vironment here.
from envs.gridworld import GridWorldEnv

# Configure logging for the project
# Create file logger, to be used for deployment
# logging.basicConfig(filename="Chapter05.log", format='%(asctime)s %(mes-
sage)s', filemode='w')
logging.basicConfig()
# Creating a stream logger for receiving inline logs
logger = logging.getLogger()
# Setting the logging threshold of logger to DEBUG
logger.setLevel(logging.DEBUG)

5.2 Code 67



5.2.2 Code for the Behavior Policy Class

class BehaviorPolicy:
"""Behavior Policy Class
Class for different behavior policies for use with an Off-Policy Reinforcement 

Learning agent.

Args: 
n_actions (int): the cardinality of the action space
policy_type (str): type of behavior policy to be implemented.

The current implementation contains only the "epsilon_greedy" policy.
policy_parameters (dict) : A dict of relevant policy parameters for the request-

ed policy.
The epsilon-greedy policy as implemented requires only the value of the 

"epsilon" as float.

Returns:
None

"""

def __init__(self, n_actions, policy_type = "epsilon_greedy", policy_parameters 
= {"epsilon":0.1}):

self.policy = policy_type
self.n_actions = n_actions
self.policy_type = policy_type
self.policy_parameters = policy_parameters

def getPolicy(self): 
"""Get the requested behavior policy

This function returns a function corresponding to the requested behavior poli-
cy 

Args: 
None

Returns:
function: A function of the requested behavior policy type.

Raises:
PolicyDoesNotExistException: When a policy corresponding to the parame-

ter policy_type is not implemented.
"""
if self.policy_type == "epsilon_greedy": 

self.epsilon = self.policy_parameters["epsilon"] 
return self.return_epsilon_greedy_policy()

else: 
raise PolicyDoesNotExistException("The selected policy does not 

68 5 Q-Learning in Code



exists! The implemented policies are "
"epsilon-greedy.") 

def return_epsilon_greedy_policy(self): 
"""Epsilon-Greedy Policy Implementation

This is the implementation of the Epsilon-Greedy policy as returned by the 
getPolicy method when "epsilon-greedy"

policy type is selected.

Args: 
None

Returns:
function: a function that could be directly called for selecting the recom-

mended action as per e-greedy.

"""
def choose_action_by_epsilon_greedy(values_of_all_possible_actions):

"""Action-Selection by epsilon-Greedy

This function chooses the action as the epsilon-greedy policy

Args: 
values_of_all_possible_actions (list): A list of values of all actions in the 

current state

Returns:
int: the index of the action recommended by the policy

"""
logger.debug("Taking e-greedy action for action val-

ues"+str(values_of_all_possible_actions))
prob_taking_best_action_only = 1 - self.epsilon
prob_taking_any_random_action = self.epsilon / self.n_actions
action_probability_vector = [prob_taking_any_random_action] * 

self.n_actions
exploitation_action_index = np.argmax(values_of_all_possible_actions)
action_probability_vector[exploitation_action_index] += 

prob_taking_best_action_only
chosen_action = np.random.choice(np.arange(self.n_actions), 

p=action_probability_vector)
return chosen_action

return choose_action_by_epsilon_greedy

5.2 Code 69



5.2.3 Code for the Q-Learning Agent’s Class

class QLearning:
"""Q Learning Agent

Class for training a Q Learning agent on any custom environment.

Args: 
env (Object): An object instantiation of a custom env class like the GridWorld() 

environment
number_episodes (int): The maximum number of episodes to be executed for 

training the agent
discounting_factor (float): The discounting factor (gamma) used to discount 

the future rewards to current step
behavior_policy (str): The behavior policy chosen (as q learning is off policy). 

Example "epsilon-greedy"
epsilon (float): The value of epsilon, a parameters that defines the probability 

of taking a random action
learning_rate (float): The learning rate (alpha) used to update the q values in 

each step

Examples:
q_agent = QLearning()

"""

def __init__(self, env=GridWorldEnv(), number_episodes=500, discount-
ing_factor=0.9, 

behavior_policy="epsilon_greedy", epsilon=0.1, learning_rate=0.5): 
self.env = env
self.n_states = env.get_statespace_len()
self.n_actions = env.get_actionspace_len()
self.stateDict = self.env.stateDict
self.n_episodes = number_episodes
self.gamma = discounting_factor
self.alpha = learning_rate
self.policy = BehaviorPolicy(n_actions=self.n_actions, poli-

cy_type=behavior_policy).getPolicy()
self.policyParameter = epsilon
self.episodes_completed = 0 
self.trainingStats_steps_in_each_episode = []
self.trainingStats_rewards_in_each_episode = []
self.q_table = np.zeros((self.n_states,self.n_actions),dtype = float) 

def train_agent(self): 
"""Train the Q Learning Agent

This is the main function to be called to start the training of the Q Learning 

70 5 Q-Learning in Code



agent in the given environment
and with the given parameters.

Args: 
None

Returns:
list: list (int) of steps used in each training episode
list: list (float) of rewards received in each training episode

Examples:
training_statistics = q_agent.train_agent()

"""
logger.debug("Number of States: {}".format(str(self.n_states)))
logger.debug("Number of Actions: {}".format(str(self.n_actions)))
logger.debug("Initial Q Table: {}".format(str(self.q_table)))
for episode in range(self.n_episodes):

logger.debug("Starting episode {}".format(episode))
self.start_new_episode()

return self.trainingStats_steps_in_each_episode, 
self.trainingStats_rewards_in_each_episode

def start_new_episode(self): 
"""Starts New Episode

Function to Starts New Episode for training the agent. It also resets the envi-
ronment.

Args: 
None

Returns:
None

"""
current_state = self.env.reset()
logger.debug("Env reset, state received: {}".format(current_state))
cumulative_this_episode_reward = 0 
for iteration in count():

current_state_index = self.stateDict.get(current_state)
policy_defined_action = self.policy(self.q_table[current_state_index])
next_state, reward, done, _ = self.env.step(policy_defined_action)
next_state_index = self.stateDict.get(next_state)
logger.debug("Action Taken in Episode {}, Iteration {}: next_state={}, 

reward={}, done={}". 
format(self.episodes_completed, iteration, next_state, reward, 

done))
if done:

self.trainingStats_rewards_in_each_episode.append(cumulative_this_episode_rew

5.2 Code 71



ard)
self.trainingStats_steps_in_each_episode.append(iteration)
self.episodes_completed += 1 
break

cumulative_this_episode_reward += reward
self.update_q_table(current_state_index, policy_defined_action, reward, 

next_state_index)
current_state = next_state

def update_q_table(self, current_state_index, action, reward, next_state_index):
"""Update Q Table

Function to update the value of the q table

Args: 
current_state_index (int): Index of the current state
action (int): Index of the action taken in the current state
reward (float): The instantaneous reward received by the agent by taking 

the action
next_state_index (int): The index of the next state reached by taking the ac-

tion

Returns:
None

"""
target_q = reward + self.gamma * np.max(self.q_table[next_state_index])
current_q = self.q_table[current_state_index, action]
q_difference = target_q - current_q
q_update = self.alpha * q_difference
self.q_table[current_state_index,action] += q_update

def plot_statistics(self): 
"""Plot Training Statistics

Function to plot training statistics of the Q Learning agent's training. This func-
tion plots the dual axis plot,

with the episode count on the x axis and the steps and rewards in each epi-
sode on the y axis.

Args: 
None

Returns:
None

Examples:
q_agent.plot_statistics()

"""

72 5 Q-Learning in Code



ingStats_steps_in_each_episode))
fig, ax1 = plt.subplots()
ax1.set_xlabel('Episodes (e)') 
ax1.set_ylabel('Steps To Episode Completion', color="red") 
ax1.plot(trainingStats_episodes, self.trainingStats_steps_in_each_episode, 

color="red") 
ax2 = ax1.twinx()
ax2.set_ylabel('Reward in each Episode', color="blue") 
ax2.plot(trainingStats_episodes, self.trainingStats_rewards_in_each_episode, 

color="blue") 
fig.tight_layout()
plt.show()

trainingStats_episodes = np.arange(len(self.train

5.2.4 Code for Testing the Agent Implementation (Main
Function)

if __name__ =="__main__": 
"""Main function

A sample implementation of the above classes (BehaviorPolicy and 
QLearning) for testing purpose.

This function is executed when this file is run from the command propt di-
rectly or by selection.

"""

logger.info("Q Learning - Creating the agent") 
q_agent = QLearning()
logger.info("Q Learning - Training the agent") 
training_statistics = q_agent.train_agent()
logger.info("Q Learning - Plotting training statistics") 
q_agent.plot_statistics()

5.2.5 Code for Custom Exceptions (File rl_exceptions.py)

class PolicyDoesNotExistException(Exception): 
pass

5.2 Code 73



5.3 Training Statistics Plot

See Fig. 5.3.

Fig. 5.3 Steps and cumulative rewards in each subsequent episode

74 5 Q-Learning in Code



Chapter 6
Introduction to Deep Learning

Enter the World of Modern Machine Learning

Abstract In this chapter we will cover the essentials of Deep Learning to the point
required in this book. We will be discussing the basic architecture of deep learning
network like an MLP-DNN and its internal working. Since many of the
Reinforcement Learning algorithm work on game feeds have image/video as input
states, we will also cover CNN, the deep learning networks for vision in this
chapter.

6.1 Artificial Neurons—The Building Blocks of Deep
Learning

A neural network is made up of many artificial neurons. Originally the artificial
neuron is modeled on the working and constitution of a real biological
neuron (Fig. 6.1). A biological neuron is connected to multiple other neurons and
parts of the brains, from which it receives signals and based on these inputs and its
internal processing of these inputs generates an output which may be used to trigger
other neurons or travel through a nerve to activate some muscles.

Now, we will try to understand how an artificial neuron is modeled
mathematically (Fig. 6.2). The input values x1, x2, …, xn are provided to the
neuron. We will represent this input as an input vector X, such that X = {x1, x2, …,
xn}. These inputs could directly represent the raw data but should be properly
scaled for effective working. At times normalization of the input features across a
batch may be required (transforming into unit mean and unit variance) if the neuron
is part of a large network having activation that may saturate the nonlinearities of
the output in a deep network. The inputs are weighed with the weight vector. The
weight vector has elements from w1, w2, …, wn. We would denote the weight
vector as W, such that W = {w1, w2, …, wn}. It is this weight vector W that we
need to train or in other words find the optimal values of the weight elements so as
to obtain the best output. Here the best output is the one which produces the least
error/loss between the actual and the predicted values across different samples in the
data set. We call the actual output as y and the predicted output from the neuron as

© Springer Nature Singapore Pte Ltd. 2019
M. Sewak, Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-13-8285-7_6

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_6&amp;domain=pdf
https://doi.org/10.1007/978-981-13-8285-7_6


ŷ  . In addition to the weights, the neuron could have a bias (say b), which is a real
number.

The processing inside the neuron is done using a function called the “Activation
Function”. The input to the activation function is called Z, which is equal to
w1x1 + w2x2 + ��� + wnxn + b(WTX + b). The output of the neuron could be rep-
resented as ŷ = Activation (Z). A suitable activation function needs to be chosen for
the purpose intended. The activation function also is influenced form the fact that
whether the so trained predictions needs to be categorical (class probability) or
continuous.

The above description corresponds to the forward pass on a single data element/
row/tuple. We would require multiple data elements to train the weights of the
network. During training, we try to minimize the losses over the complete training/

Fig. 6.1 A biological neuron (Source Wikipedia)

Fig. 6.2 Functioning of an artificial neuron (Source Sewak et al. Practical CNN)

76 6 Introduction to Deep Learning



evaluation set of data. This loss is obtained by applying a loss function over the
actual output (y) and the predicted output (ŷ). As in the case of activation function,
there are multiple loss functions to choose from and one that best suits the appli-
cation and input data could be chosen. Once training is complete, the neuron is
ready for any prediction/estimation work.

6.2 Feed-Forward Deep Neural Networks (DNN)

An artificial neuron is seldom used alone. As in the case of brain, individual neuron
in isolation are not very powerful, but still when millions of neurons combine, they
empower the entire functioning of the brain. Similarly, instead of using an artificial
neuron in isolation, these could be used to build an Artificial Neural Network
(ANN). An artificial neural network, has three layers of neurons, first is called the
input layer, next is called the hidden layer, and the last is called the output layer.
The input layer has as many neurons as the elements in the input feature vector, thus
providing a one-to-one mapping between the feature elements in the input and the
neurons in the input layer. Similarly, the output layer has as many neurons as the
number of outputs required. In case of a classification problem the number of
outputs could be as many as the number of classes to be predicted from the net-
work, whereas in the case of regression problem, the number of output could be
one. The number of neurons in the hidden layer could be changed as per the
application in hand, and it may also require some experience to arrive at the most
optimal value for this number.

ANNs are known to be universal approximators. That means that given a proper
activation function, they can approximate any continuous function on a compact
subset of data with real numbered features. But despite these approximations, a
function learnt in a single layer finds it challenging to model complex real-life data.
That is where the Deep Neural Networks (DNN) come into play. These are also
sometimes referred to as the Multilayer Perceptron (MLP) based deep neural
network (MLP-DNN), where the term MLP indicates the type of underlying arti-
ficial neuron in these networks.

The Deep Neural Networks (DNNs) have more than one hidden layer of
neurons (Fig. 6.3). Until sometime back, it was difficult to make a neural network
very deep. This was due to a phenomenon called “Vanishing Gradient” in neural
networks. In deep learning to train for the ideal weights for each layer, the error
from the last layer onwards is propagated back layer-by-layer to update the weights
of each layer starting from the last layer’s weight. The weights of these layers are
optimized/updated by taking the gradient of the loss function so that the weights
could be updated in a direction such that the loss could be minimized. The losses
could be minimized by moving to a minima in the loss function, and this minima
could be reached by moving in the direction of the so computed gradients of the
loss functions.

6.1 Artificial Neurons—The Building Blocks of Deep Learning 77



This method of training is called “Backpropagation”. As the errors are propa-
gated back in the network for finding the gradients and hence optimizing the
network. The backpropagation is possible because of the chain rule of derivatives.

So the gradient between say layer (n − 2)th and the last layer (nth layer) is the
product of the gradient (partial differentiation) between the (n − 1)th layer and the

Fig. 6.3 A deep neural network (Source Sewak et al. Overview of deep learning architectures)

78 6 Introduction to Deep Learning



(n)th layer and that between (n − 2)th layer and (n − 1)th layer. If the network is
deep then to propagate the error to the starting layers requires long chain of gradient
multiplications. The use of a suboptimal activation function like the Sigmoid and
the Tanh (as was prevalent till sometime back), leads to a small absolute value
(�1) of the resulting gradient, which when continuously multiplied with a series of
similarly small absolute values as in the chain rule leads to the gradient tending to
zero. This is what is called as Vanishing Gradient effect.

Geoffrey Hinton, known as the father of Deep Learning proposed using a set of
activation functions that overcame the vanishing gradient problem thus making it
possible to make neural networks very deep. A deep neural networks could learn
multiple functions in different layers, which when combined led to very powerful
model, enabling capabilities to work with complex structured data and unstructured
data like that representing vision and speech. Figure 6.3 here shows a similar Deep
Neural Network with 3 hidden layers for predicting on structured data.

6.2.1 Feed-Forward Mechanism in Deep Neural Networks

In the earlier section on artificial neurons, we covered the activation of a single
neuron. The activation in a Feed-Forward Deep Neural Network is similar. In a
feed-forward network, the signal propagates only in the forward direction from
neurons in one layer to the ones in subsequent layer. In a hidden layer of a DNN, all
the neurons in a given layer have their inputs connected to all the neurons in the
layer before (also known as the dense or fully connected layers), and their output
connected to each of the neurons in the layer next. The neurons in the input are
connected to the features in the input data with a one-one mapping (similar to
flattening layer) and the output layer has either one node for regression or binary
classification or as many numbers of nodes as the classes in data in case of
multinomial classification. The output layer generally has a different activation
function as compared to the input and the hidden layers.

Figure 6.4 illustrates the internal working of a single neuron in a hidden layer of
a deep neural network during the forward pass. In a DNN all the neurons within a
given layer could have different weights and hence all the weights of all the neurons
in every layer need to be trained, thus making the training process very computa-
tionally involved. In a later section on Convolution Neural Network, we will learn
about a mechanism in which the weights could be shared across neurons in a given
layer, thus reducing the computational complexity of training for a network espe-
cially meant for working with spatially correlated input data like images.

6.2 Feed-Forward Deep Neural Networks (DNN) 79



6.3 Architectural Considerations in Deep Learning

The type and number of layers in a Deep Learning network depend upon the
specific use of and type of Deep Learning network used. One of the types of layer,
namely the convolutional layer is discussed in the next section. We will not discuss
about the specifics of architecture requirements for convolutional or other special
types of network here. In this section, we will discuss the common considerations
shared across different types of deep learning networks.

6.3.1 Activation Functions in Deep Learning

As discussed earlier in the section on artificial neurons, the neurons require an
activation function to convert the weighted input “Z” of the neuron to its output.
Also, in the section on Deep Neural Network, we discussed how the change in the

Fig. 6.4 Forward pass and activation of a neuron in a layer of DNN (Source Sewak et al.
Overview of deep learning architectures)

80 6 Introduction to Deep Learning



activation function led to the success of Deep Learning and helped neural networks
to scale. Therefore, we will discuss about some of the popular activation functions
used in deep learning briefly.

SoftMax Activation

In case of the output layer for a deep learning used for classification, the output
layer needs to have as many numbers of neurons as the number of classes in the
data. Except for binary classification which requires only one neuron and can use
Sigmoid Activation, most of the multinomial classification based deep learning
ends in output layer having SoftMax Activation. The SoftMax Activation layer
provides the class probabilities for each class under consideration, scaled to the sum
of all the class’ class probability.

Pðy ¼ cjxÞ ¼ ex
TwjPK

k¼1 e
xTwk

ð6:1Þ

Linear and Identity Activation

Unlike classification problems, which requires class probabilities, the regression
problems in the output layer may have just a single neuron and require as output
from it a value that corresponding to the estimate of the variable in the output. Often
this value is a scaled representation of the data in hand instead of an absolute
representation of it. In the case of Reinforcement Learning, the estimation of Value
functions is a very good example of where Linear activation should be used in the
output layer. The identity activation is as given in Eq. (6.2). Addition of scaling and
bias factor to Identity function gives the Linear activation function.

IdentityðxÞ ¼
X
i

xiwi ð6:2Þ

Rectifier Linear Unit (ReLU) and Variants

The previous two activation functions were important for use in an output layer.
Now we will discuss the activation functions for the input and hidden layers. We
discussed about the vanishing gradient problem earlier in this chapter. The Rectifier
Linear Unit or the ReLU as proposed by Geoffrey Hinton earlier is used to solve
this problem. This function is as given in Eq. (6.3) below. Later on some of its
variants like the Leaky ReLU, as in Eq. (6.4), Randomized Leaky ReLU and
Parametrized Leaky ReLU were proposed by other researchers. Many of the
applications, especially the CNNs that we will discuss next use some form of ReLU
activation in the input/hidden layers.

6.3 Architectural Considerations in Deep Learning 81



ReLUðxÞ ¼ maxð0; xÞ ð6:3Þ

LeakyReLUðxÞ ¼ ax if x\0
x if x� 0

�
ð6:4Þ

Exponential Linear Unit (ELU)

Though the ReLU activation solves the vanishing gradient problem and some other
problems related to inactive or dead neurons, it has one problem of its own, that is
called the “Mean Shift”. Since the activations in ReLU are predisposed to positive
outputs, their mean is not zero centered, which cause a problem in Training the
network. This problem could be solved by using “Batch Normalization” in between
layers. We have discussed this enhancement of batch normalization in the context
of DDPG later in this book. DDPG use CNNs which mostly use ReLU, and hence
Batch Normalization is required. The other way of elevating the “mean shift”
problem is by replacing the ReLU activation with the Exponential Linear Unit
(ELU) activation in the input/hidden layers. ELU is given as Eq. (6.5) below.

ELUðxÞ ¼ x if x[ 0
aðexpðxÞ � 1Þ if x� 0

�
ð6:5Þ

6.3.2 Loss Functions in Deep Learning

While training a network we need to backpropagate the error to optimize the
weights/hyperparameters in each layer. This loss/error is computed using a loss
function, which takes the actual and predicted values as its input to output the loss.
Loss functions generally fall in two categories namely the L2 loss (based on square
of difference between the actual and predicted values), and the L1 loss (based on the
absolute difference between the actual and predicted value). L2 based loss functions
provide a continuously differentiable function and are easy to optimize mathe-
matically, whereas the L1 loss is more robust and not effected much by some
outliers.

Besides the difference related to absolute difference and squared difference
between the actual predicted values (L1 and L2 losses), some other changes in the
computation can help in different types of scenarios. A list of different types of loss
functions along with their L1 and L2 variants (wherever applicable) are as given in
the set of Eq. (6.6) below. The crossentropy loss for classification problems and L2
Mean Square Error—MSE for regression problems are very popular.

82 6 Introduction to Deep Learning



L2 loss: y� ok k2
Expectation Loss: y� pðoÞk k
Regularized Expectation Loss: y� rðoÞk k2

Hinge Loss:
X
j

max 0;
1
2
� ŷjoj

� �

Squared Hinge Loss:
X
j

max 0;
1
2
� ŷjoj

� �2

CrossEntropy Loss: �
X
j

yj log rð0Þj

Squared log Loss: �
X
j

yj log rð0Þj
h i2

ð6:6Þ

6.3.3 Optimizers in Deep Learning

The role of the loss functions in deep learning is to select the ideal combination of
different weights/hyperparameters that optimizes/minimizes the loss. This is theo-
retically done by finding the gradient of the loss function, and if the loss function is
convex (have a curved minimum towards the origin) in nature then updating the
weights towards the gradient of the loss function will take us to a minima (may
even be local minima instead of a global minimum) of the loss function.

But practically this is not as simple in Deep Learning as compared to some of the
machine learning problems. This is mainly because of the high cardinality of the
parameter space (or the number of hyperparameters) and the complexity of the
function that needs to be optimized. There are various issues encountered while
training in the gradient hyperspace like getting stuck in a local minima, ravines and
saddles that we can encounter during the optimization and a good optimizer,
besides being efficient and fast need to be robust against these issues. Some of the
popular optimizers used in deep learning are RMSProp, and ADAM (Adaptive
Moment Estimation). We will not go through details of the internal working of
these optimizers or cover other optimizers holistically in this book. Readers are
encouraged to go through the papers in the references and related texts for a greater
understanding of these.

6.3 Architectural Considerations in Deep Learning 83



6.4 Convolutional Neural Networks—Deep Learning
for Vision

A Convolutional Neural Network (CNN) or ConvNet is a very special kind of
multilayer deep neural network. CNN is designed to recognize visual patterns
directly from images with minimal processing. A graphical representation of this
network is shown in Fig. 6.5.

Unlike structured data which could be represented as a vector of features, image
is usually represented is a 3-dimensional matrix of real number. These three
dimensions represent the width, height, and color-channels (depth) in an image. The
value in each of the cell of the input matrix across represents the intensity (or
brightness) corresponding to the image-pixel at that position for the given color
channel. So essentially an image is a function which converts a 2-dimensional pixel
map of RGB intensity to a 3-dimensional image map with the individual color
intensities expressed as the third dimension.

Images, especially with higher resolution, represents a complex data structure. If
we try to use a feed-forward DNN similar to the one covered earlier in this book, to
model and process such a high dimensional data, it would require a very large and
very deep neural network, requiring training of billions of individual weights,
making image processing a very erroneous and computationally complex task.
Fortunately, images represent spatially correlated data. Which means that value of
intensities of pixels which are co-located (in space) in an image are very similar
(correlated) and the information across them changes gradually. This aspect could
be used to reduce the processing load of a deep learning network for images. This is
where a Convolutional Neural Network excels over its Multilayer Perceptron
(MLP) based Deep Neural Network (MLP-DNN) counterpart.

The CNNs, like the MLP-DNNs, has an input layer. But this is not a single
dimensional vector/tensor. Instead, the input mimics the dimensions of the image
(with an additional dimension representing the sample index) so as to preserve the
spatial integrity of the pixel data. Therefore, for a 3-dimensional image the CNN
input is a 4-dimensional tensor (a multidimensional array), where the 3 dimensions
of the tensor represents the 3 dimensions of the image and each dimension has the

Fig. 6.5 Graphical representation of a CNN (Source Sewak et al. Practical CNN)

84 6 Introduction to Deep Learning



same cardinality as that of the image (width x height x color-channels), and the 4th
dimension represents the image instance for training in mini-batch/batch environ-
ment. The images, especially the high resolution ones are often rescaled to reduce
size and the color-channels adjusted (or reduced) for compatibility with the model.

Between the input layer and the output layer, there are 3 different types of hidden
layers that make a convolution neural network. These are the convolutional layer,
the pooling layer and the fully connected layer. A CNN network (Fig. 6.6) could
have multiple instances of these types of layers arranged sequentially in a specific
order such that the convolutional and pooling layers are mostly interleaved fol-
lowed by all fully connected layers until the last fully connected layer connects to
the output layer. A brief description of these layers is as follows.

6.4.1 Convolutional Layer

The term Convolutional in CNN refers to its usage of the Convolutional layer,
which in turn is named after the convolution function in mathematics. In mathe-
matics, convolution is a mathematical operation on two functions that produces a
third function, that is the modified (convoluted) version of one of the original
functions. The resulting function gives the integral of the pointwise multiplication
of the two functions as a function of the magnitude that one of the original functions
is translated. Convolutional layers actually use cross-correlations, which are very
similar to this convolution operation.

The output from each convolution layer is a set of objects called feature maps,
each map generated by a single kernel filter. Then the feature maps can be used to
define a new input to the next layer. Each convolutional layer could have different
number of kernel filters.

Fig. 6.6 An illustrative CNN architecture with convolutional, pooling and fully connected layers
(Source Sewak et al. Practical CNN)

6.4 Convolutional Neural Networks—Deep Learning for Vision 85



6.4.2 Pooling Layer

Since the images data is highly correlated, therefore for efficient computation these
could be compressed in a way that retains the maximum information from it. This is
also the case with each of the convolutional maps generated from each of the
convolutional layer. Reducing the size of the input to any subsequent convolutional
layer could reduce the computational load significantly, this is where the pooling
layer helps.

The pooling layers are usually placed after the convolutional layers, for example,
between two convolutional layers. A pooling layer extends into a m x n dimension
subregion of the generated convolution map from the previous convolutional layer
and then strides (using some stride value) across the width and depth of the con-
volutional map (the end landing can be adjusted using padding to ensure the m/n
dimensions overlap the width/height dimension of the map) to cover the entire
map. Then, a single representative value is selected from each stride, using either a
max-pooling or an average pooling technique, thus reducing the output size to
subsequently reduce the computational complexity of next convolutional layers.
A pooling layer typically works on every input channel/convolutional-map inde-
pendently. So, the output depth of the output from a pooling layer is the same as its
input depth, and only the height and width of each convolutional map changes after
pooling.

6.4.3 Flattened and Fully Connected Layers

Until now, as we discussed, the input layer and all the layers after that, though
constituted of the same artificial neuron as that in the MLP-DNN, but differed
widely in structure, composition and working from its MLP-DNN countered. This
is because we required an efficient structure to generate good featured from spatially
correlated data like that of an image. But after these special layers have done their
work and we have converted the useful information in an image into a structured
data format, similar to the input data of an MLP-DNN, we could convert them into
a single dimension vector/tensor of data, similar to that of an input of a regular
MLP-DNN. This work is done by the flattened layer. The flattening/flattened layer
has as many neurons as the total number of neurons in the multidimensional CNN/
pooling layer just before it and provides a one-one mapping between the neurons in
the previous layer to that of the flattened layer to change the structure of the data
from a multidimensional one to a single dimensional one (except an additional
dimension for the data sample index) as in the input layer of an MLP-DNN.

Connected to the flattening-layer, are a series of one or more fully connected
layer (FC layer). These layers work exactly like the hidden layers of an MLP-DNN
and have each of their neuron receiving input from every neuron in its previous
layer. Also, each neuron’s output in any FC layer is connected to all neuron’s input

86 6 Introduction to Deep Learning



in the layer next to it. This is the reason why it is called the Fully Connected layer.
Finally, the last FC layer leads into the output layer, which in most cases could be a
SoftMax activated classification layer with as many numbers of nodes as classes in
the input image data. In the case of DQN and other Reinforcement Learning the last
FC layer could be connected to a linearly activated single output node that predicts/
estimates the value of a function (state-value, action-value, advantage).

At times when two different predictions are required as output but it is intended
that they share all the underlying information of the input image (observation), then
the FC connected layers after the flattening layer could start splitting into two
different networks either just after the flattening layer or after some common FC
layers after the flattening layer. Each of the two thus formed FC networks ends into
their own individual output layer corresponding to the two different outputs that
need to be predicted from this composite network. In the case of Reinforcement
Leaning, the Dueling DQN network and some of the advanced Deep Learning
based Actor-Critic models as we will subsequently study in a later chapter are a
very good example of this type of architecture.

6.5 Summary

Deep Learning is a very important enhancement to Machine Learning. Deep
Learning gives us the essential capability to develop human intelligence comparable
systems for processing vision, speech and many other complex inputs. From
empowering a modern object detector to enabling neural machine translations,
Deep Learning is the way to go for modern machine learning. Deep Learning
combined with Reinforcement Learning provides the essential ingredients to design
Deep Reinforcement Learning Agents that takes us closer to the concept of general
AI.

We discussed the working of a simple single artificial neuron like an MLP and
how it converts its inputs to outputs using an activation function. We then discussed
the networks of these neurons called the Artificial Neural Network having just a
single hidden layer and also discussed the reasons why the ANNs could not become
as popular then as what modern deep learning-based networks have become now.

We next discussed the solution to the vanishing gradient problem that has
enabled the advancements in modern Deep Learning. We discussed how the deep
learning networks especially the feed-forward types produce output in the forward
pass and optimizes the loss function using a mechanism called the backpropagation.
We also covered some important architectural considerations like the choices
available for the activation function, loss function, and optimizers to design a
powerful deep learning network.

Besides the MLP based DNN, we also covered CNNs in this chapter as many of
the agents/algorithm covered in reinforcement learning literature works on game
feeds and video data which requires processing of images using Deep Learning. We
covered the essential differences between the architecture and structure of a CNN as

6.4 Convolutional Neural Networks—Deep Learning for Vision 87



compared to that of an MLP-DNN. We also covered the role of the convolutional
layer, pooling layer (with mechanism for strides and padding), flattened layer and
the FC layer in a CNN network. We also discussed how some advanced network
could be designed to predict multiple functions (approximators) simultaneously as
we will see have been implemented in the case of algorithms like the Dueling DQN
and others that we will discuss later in this book.

88 6 Introduction to Deep Learning



Chapter 7
Implementation Resources

Training Environments and Agent
Implementation Libraries

Abstract In this chapter, we will discuss some of the resources available for
building one’s own reinforcement learning agent easily, or implementing one with
the least amount of code. We will also cover some standardized environment,
platforms, and community boards against which one can evaluate their custom
agent’s performances on different types of reinforcement learning tasks and
challenges.

7.1 You Are not Alone!

Often, the greatest predicament in starting a new journey, especially the one on a
road less traveled by is a persistent apprehension that help might be difficult to get.
Many enthusiasts even leave the journey midway after some struggle. But any
journey could not just be completed by thinking about it, admiring the destination,
or reading about the required skills. One has to take the physical steps to complete
it. But often, the first step is the most difficult and also the most daunting. This
book, besides covering sufficient theoretical and recent research developments in
the area of Deep Reinforcement Learning, aspires to also be your aid in imple-
menting these useful skills in your practical application. We want to assure the
readers and let them know that they are not alone, and there is plenty of help and
resources available to help them in their journey of implementing cutting-edge
Deep Reinforcement Learning Algorithms hands-on.

Modern, Deep Reinforcement Learning is not a very old science, but it is
maturing and gaining a lot of popularity recently. It may be very rewarding to hone
a skill that many do not possess, but at the same time, it may be difficult to acquire
decent level of proficiency in that skill, especially if there are not many standardized
resources available to test your implementation, or to get fresh ideas from, or to
reach out to a community when you have got stuck or need help. This chapter aims
to cover some of the resources you may find helpful in both making your own agent
based on a new idea, or experimenting with an already implemented agent on your
custom environment, or testing the enhancements you made to an existing agent

© Springer Nature Singapore Pte Ltd. 2019
M. Sewak, Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-13-8285-7_7

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_7&amp;domain=pdf
https://doi.org/10.1007/978-981-13-8285-7_7


against some standardized benchmarks. Since Reinforcement Learning is a very
actively maturing practice, it is likely that these resources may get dated over time,
and new ones arrive. Also, we may have missed out some good resources which
others could have found useful. Therefore, the resources covered in this chapter are
presented more from a reference perspective than from a comparison or endorse-
ment perspective.

This chapter is divided into two subparts. The first covers some standardized
reinforcement workbenches and environments that could be used to test our agents
against, and the second deals in tools that we can use to code an agent easily. In this
book, for most of the chapters, we will be code our own agents, mostly the hard
way writing each line of code for enabling the agent. This is purposely done so as to
make the readers comfortable with the idea of coding an agent even from scratch if
they are required to. But if someone’s primary purpose is just to focus on con-
verting their application into a scenario where they could apply reinforcement
learning, and not necessarily coding a new type of agent, then a lot of existing
implementation of both reinforcement-specific mathematical libraries and complete
implementation of the agents exists that could be utilized to quickly get started.

So ideally, there could be five different types of way that these resources could
help the readers in their journey. First, is for the users who are just starting and want
to get a feel of the state of the art in different types of implementations. For such
users, there are available baseline agents for different standardized environments.
Users can just download the code for the agent and the environment and test it.
Second, is if someone would just like to enhance an existing model, may change the
underlying deep learning model or apply some additional transformations, or
optimizers, etc., and test how well their modifications perform, then there are
community boards for some standardized environments which publish top scores,
against which the user can run their custom agents and compare the scores. Third, is
for the users who would like to implement a completely new agent and want some
abstracted implementation of mathematical abstraction like automatic differentia-
tion, etc., to ease their development. For these users, there are powerful and flexible
libraries available that provide abstracted implementation of reinforcement-specific
mathematics. Fourth, if the user has their own environment (or data) for their
specific domain implementation, something like we have made in Chap. 3 earlier
for the “Grid World” problem, and want a very fast and easy implementation of
multiple types of standardized agents such that they can just run against their
environment in not more than a few lines of codes, there are libraries available that
provide such easy implementation of multiple standardized agents that could be
tried. Fifth, if none of these standardized agents work on one’s custom problem and
someone want help and ideas from other researchers, who could develop new and
advanced agents for one’s specific problem, then it is also possible to submit a
personal environment to the community which will not only help solve the problem
with fresh ideas, but may even give rise to new stream of algorithms.

90 7 Implementation Resources



7.2 Standardized Training Environments and Platforms

In this section, we will discuss some of the initiatives, platforms, and environments
available against which one can test their own agents, and provides a vibrant
community of like-minded researchers to share ideas and implementations. Many of
the new researches in the field of reinforcement learning have their genesis in
making an agent that performs exceptionally well on one of these standardized
problems as compared to the agents from an existing art on similar tasks/
environments. All the links for these resources are available in the “references”
section.

7.2.1 OpenAI Universe and Retro

OpenAI Universe (deprecated giving way to Retro) and the related Gym initiatives
are the most popular and interesting resources for any Reinforcement Learning
researcher, professional, or enthusiast. OpenAI Universe is essentially a collection
of custom environments that user can submit to the community OpenAI Gym being
the interface to each of these submitted environments for training, similar to how a
human would play a video game.

With Universe, even if one does not want to submit the actual code of the
environment, the universe could spawn a docker container which captures the input
controls and sends the video or other output to simulate a Reinforcement Learning
environment.

OpenAI Universe is now deprecated in favor of Retro. Retro is a wrapper for
video game emulator cores, and turn them into Gym environment using the
Liberto API. It supports emulator for the popular video game systems like the Atari,
Sega, Nintendo, and NEC.

7.2.2 OpenAI Gym

OpenAI Gym is by far the most popular toolkit for any Reinforcement Learning
enthusiast and implementer. As discussed above, Gym offers an interface for dif-
ferent types of environments. These environment does not only include the video
game environments the ones emulated using Universe or Retro but a wide variety of
environments with different types of challenges and for different types of appli-
cation domains.

Gym environments includes the environment groups like the Atari2600 games
for Atari video games, Box2D for six types of continuous control Box2D simulator
games, Classic Control for five different types of environments on control dis-
cussed in classic reinforcement learning literature, MuJoCo for ten different types

7.2 Standardized Training Environments and Platforms 91



of continuous control tasks running in fast physics simulator, Robotics for eight
different types of tasks simulator for a robotic hand, and ToyText for eight different
types of simple text-based environments.

While discussing how to make one’s custom environment, we have already
discussed the specifications of a Gym standard environment and the important
internal attributes and methods for a Gym environment. If your custom environment
adheres to these guidelines, Gym also provides a “registry” mechanism so that you
can register your environments inside the Gym library.

7.2.3 DeepMind Lab

Google’s DeepMind Lab researches on two aspects of Reinforcement Learning.
The first is on creating new agents, as we would have realized based on the so many
recent literature that we have covered in this book itself. Another is on powerful
environments for training agents. The DeepMind Lab provides an advanced 3D
environment which could render scenes with advanced science fiction like rich
visuals to train an agent. The different types of tasks in these environments aim to
provide different challenges enabling training for General Artificial Intelligence.

7.2.4 DeepMind Control Suite

Like the OpenAI Gym, the DeepMind Control Suite provides the environment for
training on continuous control environment of MuJoCo. This suite is written in
Python and could be customized to include custom implementation of tasks based
on MuJoCo physics engine.

7.2.5 Project Malmo by Microsoft

Malmo is a project by Microsoft to enable research in the field of Artificial
Intelligence. It is based on Microsoft’s popular video game Minecraft. It is written
in Java, but the agents could be programmed in any popular language and run on
multiple platforms including Windows, Linux, and Mac.

7.2.6 Garage

Sometime back “RLlab” used to be a very popular platform for reinforcement
learning resources. It is now deprecated and no longer in active development.

92 7 Implementation Resources



Instead, it gave way to a project called Garage led by an alliance of researchers.
Garage is based on Python 3.5 and offers both standardized agents and environ-
ments that are compatible with OpenAI. Garage also supports AWS EC2
cluster-based agent deployment.

7.3 Agent Development and Implementation Libraries

This section covers some of the libraries that could be helpful in either developing
or implementing a Reinforcement Learning agent. Python is one of the most vibrant
and popular programming platforms for Reinforcement Learning, so we would
cover mostly Python-based libraries. But there are libraries in some others platforms
also like the ones implemented in MATLAB (for example, Sutton’s implementa-
tion) and Java (for example, BURLAP, and rl4j) that interested readers are
encouraged to explore.

7.3.1 DeepMind’s TRFL

In this book, we have directly worked on platforms like TensorFlow, or its wrappers
like Keras for developing the code, but at times, the agents may become too
involved mathematically and it may not be a good experience coding low-level
mathematics directly. Under such scenario, a library that provides mathematical and
other types of building blocks to aid the development of custom agents. TRFL
(pronounced “Truffle”) from DeepMind aims to do exactly that. TRFL is itself built
over TensorFlow like some of the other libraries in this section.

7.3.2 OpenAI Baselines

OpenAI’s Baselines project provides an implementation for some very good rein-
forcement learning agents for the research community for the purpose of not only
providing an algorithmic baseline for many types of agent’s implementation, but
also to provide new implementation ideas.

7.3.3 Keras-RL

Built over Keras, which in turn is a high-level wrapper for TensorFlow and some
other deep learning platforms, Keras-RL is a very popular and easy to use

7.2 Standardized Training Environments and Platforms 93



Reinforcement Platform that provides a customizable instance of multiple types of
agent and also an environment class that is compatible with OpenAI Gym’s
environment.

7.3.4 Coach (By Nervana Systems)

Coach aims to provide an exhaustive bundle of different types of reinforcement
learning resources ranging from agents, environments, neural network architectures,
policies, etc., which can be used, customized, and refined in isolation with others.
Coach also provides capabilities to horizontally distribute the implementation of
multiple agents, and also provides a dashboarding system to visualize the agent’s
performances.

7.3.5 RLlib

RLlib provides both the agent’s implementations, as well as some primitives, to
build one’s own agents. It also provides preprocessors for both TensorFlow and
Torch, as well as supports custom preprocessors. Besides distributed and
multi-agents implementation like QMIX and IMPALA, it also offers distributed
implementation of prioritized experience replay.

94 7 Implementation Resources



Chapter 8
Deep Q Network (DQN), Double DQN,
and Dueling DQN

A Step Towards General Artificial Intelligence

Abstract In this chapter, we will take our first step towards Deep Learning based
Reinforcement Learning. We will discuss the very popular Deep Q Networks and
its very powerful variants like Double DQN and Dueling DQN. Extensive work has
been done on these models and these models form the basis of some of the very
popular applications like AlphaGo. We will also introduce the concept of
General AI in this chapter and discuss how these models have been instrumental in
inspiring hopes of achieving General AI through these Deep Reinforcement
Learning model applications.

8.1 General Artificial Intelligence

Until now the Reinforcement Learning agents that we studied may be considered to
be falling under the category of Artificial Intelligence agents. But is there something
beyond Artificial Intelligence as well? In Chap. 1 while discussing what could be
called as real “Intelligence”, we stumbled upon the idea of “Human-Like” behavior
as a benchmark for evaluating the degree of “Intelligence”. Let’s spend a moment
discussing what a human’s intelligence or human-like intelligence is capable of.

Taking our theme of games again for this discussion so that all the readers could
relate. Ever since ’80s many could have grown up playing video games like
“Mario”, then “Contra”, and then could have explored some popular FPS (First

© Springer Nature Singapore Pte Ltd. 2019
M. Sewak, Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-13-8285-7_8

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_8&amp;domain=pdf
https://doi.org/10.1007/978-981-13-8285-7_8


Person Shooter Categories) games like “Half-Life”, followed by “Arcade” genre
games like “Counter-Strike”, and now addicted to the more popular
“Battle-Royale” genre of games like “PUBG” and “Fortnite”. It may take someone
a day or may be a week to gain a decent level of proficiency in any of these games,
even while moving from one game to another, and at times even addicted to more
than a single game simultaneously. As humans, even for the avid game enthusiasts,
we do a lot of things besides playing games as well, and we could gain increasingly
improved proficiency at all of them with the same “mind” and the “Intelligence”
that we have. This concept where a single architecture and model of intelligence
could be used to learn different seemingly even unrelated problems is called
“General Artificial Intelligence”.

Until recently the Reinforcement Learning agents were handcrafted and tuned to
perform individual and specific tasks. For example, we could have various scholars
experimenting with innovative agents and mechanisms to get better in the game of
“Backgammon”. Recently with AI gym and some other initiatives opening their
platforms to Reinforcement Learning academician and enthusiast to work on
standardized problems (in the form of exposed standard environments) and com-
pare their results and enhancements for these problems with the community, there
have been several papers and informal competitions where researchers and aca-
demicians try to propose innovative algorithms and other enhancements that could
generate better scores/rewards in a specific environment of Reinforcement
Learning. So essentially, from one evolution of agents to another, the
Reinforcement Learning agents and algorithms that empower them keeps getting
better in doing a particular task. These specific tasks may range from solving a
particular environment of the “AI Gym” like playing “Backgammon” to balancing
g “Cart-Pole” and others. But still, the concept of “General Artificial Intelligence”
has remained evasive.

But things are changing now with the evolution of “Deep Reinforcement
Learning”. As we discussed in an earlier chapter, “Deep Learning” has the capa-
bility of intelligently self-extracting important features from the data, without
requiring human/SME involvement in handcrafting domain specific features for
them. When we combine this ability with the self-acting capability of the
Reinforcement Learning, we come closer to realizing the idea of “General Artificial
Intelligence”.

8.2 An Introduction to “Google Deep Mind”
and “AlphaGo”

Researchers at Google’s “Deep Mind” (“Deep Mind” was acquired by Google
sometime back) developed this algorithm called as the Deep Q Network that we
will be discussing in detail in this chapter. Researchers at Deep Mind combined the
Q-Learning algorithm in Reinforcement Learning with the ideas in Deep Learning

96 8 Deep Q Network (DQN), Double DQN and Dueling DQN



to enable the concept of Deep Q Networks (DQN). A single DQN program could
teach itself how to play 49 different games from the “Atari” titles (“Atari” used to
be a very popular gaming console in the era of ’80s and beyond. Atari had a lot of
game titles with graphical interfaces.) and excel at most of them simultaneously,
even defeating the best of human adversary’s scores for most of these titles as
shown in the Fig. 8.1.

Algorithms similar to the DQN also powered “Deep Mind”s’ famous “AlphaGo”
program. AlphaGo was the very first program that for the first time consistently and
repeatedly defeated the best of human adversaries at the game of “Go”. For the
readers who are unfamiliar with the game of “Go”, if they understand “Chess” then
just for the sake of comparison, if they consider “Chess” as a game that challenges
human intelligence, planning and strategizing capabilities to a significant level, then
the game of “Go” is considered to take these challenges many notches higher. It is
known that the number of possible moves in the game of “Go” is even more that the
number of atoms in the entire universe, and hence it requires the best of human
intelligence, thinking and planning capabilities to excel in this game.

Fig. 8.1 Normalized performance of DQN versus human gamer (100*(DQN-score—
random-play-score)/(human-score-random-play-score)) for games where DQN performed better
than human gamer (Ref DQN-Nature-Paper)

8.2 An Introduction to “Google Deep Mind” … 97



With a Deep Reinforcement Learning agent, consistently defeating even the best
of human adversaries in these games, and with many other similar Deep
Reinforcement Learning algorithms consistently defeating their respective human
adversaries in at least 49 other gaming instances as claimed in multiple comparative
studies using standardized games/environments, we could assume that the
advancements in the area of “Deep Reinforcement Learning” are leading us towards
the concept of “General Artificial Intelligence” as described in the previous section.

8.3 The DQN Algorithm

The term “Deep” in the “Deep Q Networks” (DQN) refers to the use of “Deep”
“Convolutional Neural Networks” (CNN) in the DQNs. Convolutional Neural
Networks are deep learning architectures inspired by the way human’s visual cortex
area of the brain works to understand the images that the sensors (eyes) are
receiving. We mentioned in Chap. 1, while discussing about state-formulations, that
for image/visual inputs, the state could either be humanly abstracted or the agent
could be made intelligent enough to make sense of these states. In the former case a
separate human-defined algorithm to understand the objects in an image, their
specific instances, and the position of each on the instance, is custom trained and
then the agent is fed this simplified data as an input to form a simplified state for the
agent to work on. In the latter case, we also discussed a way that we could enable
our Reinforcement Learning agent itself to simplify the state of raw image pixels for
it to draw intelligence from. We also discussed the role of CNN (Convolutional
Neural Networks) briefly there.

CNNs contains layers of Convolutional Neurons, and within each layer there are
different kernel (functions) that cover the image in different strides. A 3 � N � N
dimensional input image (here 3 � N � N dimension input means an input image
with 3 color channels, each of N � N pixels) when passed through a convolutional
layer may produce multiple convolution maps of lower dimension as compared to
input pixel size of N � N for each channel, but each resulting map use the same
weight for the kernels. Since the weights for the kernels in a layer remains the same
so only a single vector needs to be optimized hence for bringing out the key features
in an image a CNN is more efficient for working on images than any a DNN (MLP
based Deep Neural Network) counterpart delivering similar accuracies. But the
output of a CNN is a multidimensional tensor, which is not effective for feeding
into any subsequent classification or regression (value estimation) model.
Therefore, the last convolutional layer of a CNN is connected to one or more flat
layers (which are similar to the hidden layer in a DNN network) before it is fed into
(mostly) a “SoftMax” activation layer for classification or (generally) a “Linear”
activation layer for regression. The “SoftMax” activation layer produces the
class-probabilities for each class for which classification is required and choosing
the output class with the highest class-probability (argmax) determines the best
action.

98 8 Deep Q Network (DQN), Double DQN and Dueling DQN



The DQN network contains the CNN network as described above. The specific
DQN that we mentioned in the earlier section on the introduction to General
Artificial Intelligence, that performed well on 49 Atari titles simultaneously, used
an architecture having a CNN with 2 convolutional layers, followed by two fully
connected layers, terminating into an 18 class “SoftMax” classification. These 18
classes represent the 18 actions possible from an Atari controller (Atari had a single
8-direction joystick, and just one button for all the games) that the game input could
act on. These 18 classes (as used in the specific DQN by DeepMind for Atari) are
Do-Nothing (i.e., don’t do anything), then 8-classes representing the 8 directions of
the joystick (Move-Straight-Up, Move-Diagonal-Right-UP, Move-Straight-Right,
Move-Diagonal-Right-Down, Move-Straight-Down, Move-Diagonal-Left-Down,
Move-Straight-Left, Move-Diagonal-Left-Up), Press-Button (alone without mov-
ing), then another 8 actions corresponding to simultaneously pressing the button
and making one of the joystick-movement.

With every instance that the agent is required to act (such action instances may
not exactly correspond with every step one to one as we will discuss later), the
agent chooses one of the actions (note that one of the actions is Do-Nothing as
well). Figure 8.2 shows the illustrative architecture of the Deep Learning model
culminating into the required 18 action classes.

The motivation for this book enables the user to make their own real-life RL
agent. Since the Atari based agent might not have the most suitable model for some
of the other applications, we may have to change the CNN configurations and the
structure of the output layer for the specific use cases and domain that we would be
implementing it for.

Fig. 8.2 DQN CNN schematic (Ref DQN-Nature-Paper)

8.3 The DQN Algorithm 99



Atari gives a 60 FPS video output. It means that every second the game gen-
erates and displays/sends 60 images as an input. This is the signal that we could use
as an input to our agent as states. One drawback of using raw image pixels and
working directly with all consecutive frames at such high frame rate to train a
Q-Learning-Network is that the training of the Q-Learning-Network may not be
very stable. Not only the training might take a lot of time to converge, but at times
instead of converging the loss function may actually diverge or get stuck into a
hunting loop. To overcome these challenges while working on high frame rate,
high-dimension, correlated image data the DQN had to implement the following
three enhancements to ensure descent convergence and practical applicability.

8.3.1 Experience Replay

It is important to understand the concept of “Experience Trail”, before we discuss
“Experience Replay” enhancement. In Chap. 4, while discussing Q-Learning, we
referred to the quadruple of (state, action, reward, next-state) as an “experience”
data instance to train the Q-Learning’s Action-Value/Q function. In “Experience
Trail”, the first term “experience” is exactly the same experience instance, that is a
tuple of (state, action, reward, next-state) or (s, a, r, s′) in abbreviated form. Now let
us discuss the problem of convergence as we briefly touched upon in the earlier
section in greater detail to understand why the “trail” of such experience instances
is required.

While using graphical feed as input to our reinforcement learning agent we get
numerous frames of raw pixels in quick succession. Also, since these frames are in
sequence, there would be very high correlation amongst such consecutive input
frames. The update that occurs to the Q function values during the training process
is very sensitive to the number of times the algorithm encounters a particular
experience instance. In the basic Q-Learning algorithm, the action-values/Q
Function is updated in every step. Though we will understand in the later subsection
that in DQN this shortcoming is also enhanced slightly for the same reason.
Consecutively seeing similar experience instances very frequently, will result in the
weights of the Q network updated in a very specific direction. Such biases in
training may lead to the formation local “ravines” in the loss function’s hyperpa-
rameter space. Such “ravines” are very difficult to maneuver by simple optimization
algorithms and hence such biases from the ingestion of multiple similar experience
instances slows down or hinders the optimization of the cost function. It may be
difficult to optimize such a loss function under these challenges, and the training of
such a Q network may warrant the use of very complex optimizers.

Therefore, in “Experience Trail” the “experience-tuples“ are not directly used in
the order that they are being generated from the source system (in our case the Atari
processor) to train the agent. Instead, all the experience instance tuples as generated
from the source system are collected in a memory-buffer (mostly having fixed size
of memory). This memory-buffer is updated with new experience instances as they

100 8 Deep Q Network (DQN), Double DQN and Dueling DQN



are received as a queue, i.e., in a first-in, first-out order. So as soon as the
memory-buffer reaches its limit, the oldest experience instances are deleted to make
way for the latest experience instances. From this pool/buffer of experience
instances, the “experience-tuples” are picked randomly to train the agent. This
process is known as “Experience Replay”.

“Experience Replay” not only solves the problems arising from the use of
concurrent-sequence of experiences for training the Q network as we discussed
earlier but also limits the similar-frames problem as only a few frames from a
concurrent sequence are likely to be picked in a random draw.

8.3.1.1 Prioritized Experience Replay

“Prioritized Experience Replay” is an enhancement to the Experience Replay
mechanism used in the base/original DQN algorithm that outperformed humans in
49 of Atari games. A DQN with Prioritized Experience Replay was able to out-
perform the original DQN with “uniform” Experience Replay in 41 of the 49 games
where the original DQN outperformed human gamers.

In the basic “Experience Replay” enhancement that we discussed earlier, we
learnt that “all” the experience instances are stored in the experience train in the
same order that they are received. Such buffered experience instances are “ran-
domly” selected for training. As the name suggests, in Prioritized Experience
Replay, we would like to use some sort of priority in this experience replay process.

There are two mode of prioritizing experience instances from the experience
trail. The first mode to “prioritize” which input experience instances received from
the source system are stored in the experience trail from where these could be
picked at random for “replay”. Alternatively, the second mode is to buffer all the
experience instances as they are being generated from the source system and then to
prioritize which specific experience instances are selected to be replayed from this
unprioritized storage.

In the “Prioritized Experience Replay” enhancement we chose to prioritize using
the second mode. Once we have determined the prioritization mode as that of
prioritized replaying from an unprioritized experience trail (storage), the second
decision aspect is to determine the specific criteria for prioritizing the experience
instance for replay. For this, the “Prioritized Experience Replay” algorithm uses the
Temporal Difference error “d” as the criteria to prioritize specific experience instance
for replay in subsequent iterations of the training. So, unlike the original (“uniform”)
Experience Replay method, where every experience instance ((s, a, r, s′) tuple) has
a uniform probability to be selected for training, the Prioritized Experience Replay
variant gives relatively higher priority to samples that produced a larger TD error
“d”.

8.3 The DQN Algorithm 101



So, the probability of selection of a given experience tuple is given as

pi ¼ dij j þ e ð8:1Þ

where e is an added constant to avoid zero probability for any available sample in
the experience trail. One problem with the above formulation is that though such a
prioritization is good when the training is in initial phases, later on when the agent
has predominantly learnt from some specific experiences repeatedly, it develops
biases towards such experience instances. This leads to over-fitting of the agent’s
model and associated nuances. To avoid this pitfall in the above equation is
modified slightly and a stochastic formulation is applied to it to add some ran-
domness and avoid a completely greedy solution. This is done as below

PðiÞ ¼ paiP
k p

a
k

ð8:2Þ

In the equation above (Eq. 8.2), the process for determining the probability of
sampling a particular experience instance could be controlled. We could have a
sampling probability on a particular experience instance as one generated from a
sampling process that ranges from a process that is purely random to a process that
is purely greedy to anything in between. This control is defined is determined to be
a parameter that is the ratio of the priority of transition as defined in the earlier
equation, normalized over all transition priorities, each raised to the power “a”.
Here “a” is a constant that determines the greediness of the sampling process. a
could be set to any value between 0 and 1. A process with a = 0 denotes no
prioritization and gives an effect of uniform sampling, leading to results similar to
that of the original unprioritized Experience Replay algorithm. Conversely, a pro-
cess with a = 1, will be similar to the extreme prioritized experience replay for
samples with large TD errors throughout the training and associated biases as we
discussed earlier.

8.3.1.2 Skipping Frames

A further enhancement for the problem caused because of the bias due to training
with frequent and multiple consecutive similar frames as discussed above is that we
do not pick all 60 the frames generated per second for the purpose of training. In the
DQN trained for “Atari” 4 consecutive frames were combined to make the data
pertaining to one state. This also reduces computational cost, without losing much
information. Assuming that the games are made for human reactable time between
key events, there would be a lot of correlation in every frame if the feed is at 60 fps.
The number 4 frames every 60 is not very hard. In practical application in one’s
own domain, this number could be adjusted depending upon the requirement of the
specific use case and the input frequency and correlation amongst consecutive
frames.

102 8 Deep Q Network (DQN), Double DQN and Dueling DQN



8.3.2 Additional Target Q Network

One major change that the Deep Q Networks made over that of the basic Q
Learning algorithm, is that of the introduction of a new “Target-Q-Network”. While
discussing Q-Leaning in Chap. 4, we referred to the term “(r + c maxa′(Q(s′, a′))” in
the equation for the Q Function update (Eq. (4.7)) as the “target”. Given below is
the complete equation for reference.

Qðs;aÞ ¼ ð1� aÞQðs;aÞ þ aðrþ cmax
a0

Qðs0;a0ÞÞ ð4:7Þ

So essentially in this equation the Q Function Q (s, a) is being referred twice and
each of this reference is for different purposes. The first reference, i.e., (1 − a)Q(s, a)

is mainly to retrieve the present state-action value so as to update its value (use of Q
as in: Q(s, a) = (1 − a) Q(s, a) + ���), and the second is to get the “target” value for the
subsequent Q value for the next state-action (i.e., Q as in: r + c max a′(Q(s′, a′)).
Though in the basic Q Learning algorithms both these Q Functions/Networks (or
Q-Tables in case of a tabular Q-Learning approach) were same, it may not nec-
essarily be so always.

In DQN the “target” Q network is different from the one that is being contin-
uously updated in every step. This is done to overcome the drawbacks related to
using the same Q Network for both continuous updates and for referring the target
values. These drawbacks are majorly because of two reasons. The first as we
highlighted earlier in the section of basic DQN, i.e., related to issues related
delayed/suboptimal convergence in case of too-frequent, and highly correlated data
for training. It could be noted that if the targets for training are coming from the
same network they are bound to be correlated. Another reason is that it is not a good
idea to use the target values from the same function to correct its own update. This
is because when we use the same function to update its own estimates then
sometimes it may lead to “unstable” target function.

Thus, it is found that using two different Q networks for these two different
purposes enhances the stability of the Q network. But if a target action-value is
required for the training, and if this target value does not update at all after ini-
tialization (which as we learnt could even be all zeros in case of Q Learning as it is
an off-policy algorithm), then the “active” (actively updated/estimated) network
could not be updated effectively. Therefore, the “target” Q Network is synced and
updated with the actively updated Q Network’ once every “c” number of steps. For
the “Atari” problem, the value of “c” was fixed to 1000 steps.

8.3.3 Clipping Rewards and Penalties

Although this is not a very significant change while considering training and
deployment for a single application, when considered in perspective of developing

8.3 The DQN Algorithm 103



a system for “General Artificial Intelligence” the mechanism for accumulating
rewards and penalties needs to be balanced. Different games (and real-domain
skills) may have a different scoring system. Some games may offer a relatively
lower absolute score for even a very challenging task, and others may be too
generous in giving absolute rewards (scores). For example, in a game like “Mario”,
it is easy to get score in the range of hundreds of thousands of points; whereas in a
game like “Pong” the player gets just a single point for defending an entire game.

Since Reinforcement Learning and especially the idea of “General Artificial
Intelligence” has spawned from the human mind’s ability to learn different skills, let
us analyze the constitution of our own body to understand this concept better.
Human’s and for that matter most of the animals learn different habits and
stereotypes by a process called reinforcement, which is also the basis of
Reinforcement Learning that we have modeled for the machines to become adept at
different skills. Since Reinforcement Learning requires a reward to “reinforce” any
behavior so our mind should also work on receiving some rewards to reinforce and
learn any behavior. In humans, the sense of reward is achieved by the release of a
chemical called “dopamine”, which reinforces a particular behavior that acted as a
trigger to this behavior. If you are curious why you get so addicted to your mobile
and want to click on every notification, social media feeds and shopping apps to the
point that they start controlling you instead of you controlling them, you can blame
the dopamine response for the same. Similarly, the addictions to substances ranging
from drugs to sugary foods are governed by the reinforcement caused by the release
of dopamine which serves as the reward mechanism to make us reinforce certain
behaviors.

Since the body’s dopamine-producing capability is limited, so an automatic
scaling and clipping effect is realized across different activities we do. When this
dopamine response system is altered externally/chemically for example by con-
sumption of drugs, it does lead to withdrawal from other activities and bring
meaning to life, leading to an unstable behavior and outcome.

To achieve a similar reward/penalty scaling and clipping effects in the DQN as
used in the “Atari” game, all the rewards across all games were fixed to +1 and all
penalties to −1. Since rewards are key to reinforcement training and vary widely
across applications, readers are encouraged to device their own scaling and clipping
techniques for their respective use cases and domains.

8.4 Double DQN

In situations like the ones that warrant the application of Deep Reinforcement
Learning, generally the state-space and state-size may be extremely large, and it
may take a lot of time for the agent to learn sufficient information about the
environment and ascertain which state/actions may lead to the most optimal

104 8 Deep Q Network (DQN), Double DQN and Dueling DQN



instantaneous or total rewards. Under these conditions, the exploration opportuni-
ties may be overwhelmed (especially in the case of constant epsilon-based algo-
rithms) and the agent may get stuck to exploiting the explored and estimated
state-action combinations that have relatively higher values even if not the highest
values possible but not yet explored. This may lead to the “overestimation of Q
Values” for some of these combinations of state-actions leading to suboptimal
training.

In the earlier section, we discussed about splitting the Q Network into two
different Q Networks, one being the online/active and the other being the target Q
Network whose values are used as a reference. We also discussed that the target Q
network is not updated very frequently and instead is updated only after a certain
number of steps. The above highlighted overestimation problem may become even
more significant if the actions are taken on the basis of a Q network (Target
Q-network) whose values are not even frequently updated (since these are updates
from the active “online” Q Network after every thousands or so of steps).

We also discussed in the earlier section why it was important to split the Q
Network into the active and the target Q Networks and the benefits of a dedicated
target Q Network. So, we would like to continue using the “Target” Q Network as it
offers better and more stable target values for the update. To combine the best of
both worlds, the “Double DQN” algorithms propose to select the action on the basis
of the “Online” Q Network but to use the values of the target state-action value
corresponding to this particular state-action from the “Target” Q Network.

So, in Double DQN, in every step, the value of all action-value combinations for
all possible actions in the given state is read from the “online” Q Network which is
being updated continuously. Then an argmax is taken over all the state-action
values of such possible actions, and whichever state-action combination value
maximizes the value, that particular action is selected. But to update the “Online” Q
Network the (target) corresponding value of such selected state-action combination
is taken from the “target” Q Network (which is updated intermittently).
Double DQN algorithm suggests and by doing so we could simultaneously over-
come both the “overestimation” problem of Q Values while also avoiding the
instability in the target values.

8.5 Dueling DQN

Until now the Deep Learning Models (here the term models refer to its usage as in
supervised learning models as opposed to the MDP model) that we covered, were
“Sequential” architectures (sequential architectures and sequential models may have
different meaning in deep learning). In these models, all the neurons in any par-
ticular layer could be connected only to the neurons in just one layer before and one
layer after their own layer. In other words, no branches or loops existed in these
model architectures.

8.4 Double DQN 105



Though both DQN and Double DQN had two Q networks, but there was only
one deep learning model and the other (target) network values was a periodic copy
of the active (online) network’s values. In Dueling DQN we have a non-sequential
architecture of deep learning in which, after the convolutional layers, the model
layers branches into two different streams (subnetworks), each having their own
fully connected layer and output layers. The first of these two branches/networks
are corresponding to that of the Value function which is used to “estimate” the
value of a given state, and has a single node in its output layer. The second branch/
network is called the “Advantage” network, and it computes the value of the
“advantage” of taking a particular action over the base value of being in the current
state (Fig. 8.3).

But the Q Function in Dueling DQN, still represents Q Function in any atypical
Q Learning algorithm and thus the Dueling DQN algorithm should work in the
same way conceptually as how the atypical Q Learning algorithm works by esti-
mating the absolute action values or Q estimates. So somehow, we need to estimate
the action-value/Q estimates as well. Remember action-value is the absolute value
of taking a given action in a given state. So, if we could combine (add) the output of
the state’s base value (first network/branch) and the incremental “advantage”
values of the actions from the second (“advantage”) network/branch then we could
essentially estimate the action-value or are Q Values as required in Q Learning.
This could be represented mathematically as below

Qðs;a;h;a;bÞ ¼ Vðs;h;bÞ þ ðAðs;a;h;aÞ � max
a02 Aj j

Aðs;a0;h;aÞÞ ð8:3Þ

Fig. 8.3 Schematic—Dueling Q network

106 8 Deep Q Network (DQN), Double DQN and Dueling DQN



In the Eq. (8.3), above the terms Q, V, s, a, a′ have the same consistent meaning
as we discussed earlier in this book. Additionally, the term “A” denotes the
advantage value. “h” represents the parameter vector of the convolutional layer
which is common to both the “Value” network and the “Advantage” network. “a”
represents the parameter vector of the “Advantage” network and “b” represents the
parameter vector of the “State-Value” function. Since we have entered the domain
of function approximators, therefore the values of any network are denoted with
respect to the parameters of the “estimating” network to distinguish between the
values/estimates of the same variable estimated from multiple different estimating
functions.

The equation in simple terms mean that the Q value (the subscripts h, a, b to the
Q here indicates that the Q estimates here are as computed from the estimating
model which has three series of parameters or is a function of h, a, b) for a given
state-action combination is equal to the value of that state or absolute utility of
being in that state as estimated from the state-value (V) network (the subscripts h, b
of V in the equation denotes that the state values are coming from an estimation
function that has parameters h, b), plus the incremental value or the “advantage”
(the subscripts h, a of A in the equation denotes that the advantage is derived from
an estimation function that has parameters h, a) of taking that action in that state.
The last part of the equation is to provide the necessary corrections to provide
“identifiability”.

Let us spend a moment to understand the “identifiability” part in greater details.
The Eq. (8.3), from the simple explanation we discussed above which is also
intuitive could have been as simple as below

Qðs;a;h;a;bÞ ¼ Vðs;h;bÞ þAðs;a;h;aÞ ð8:4Þ

But the problem with this simple construct as in Eq. (8.4) above is that though
we could get the value of Q (action values), provided the values of S and A are
given, but the converse in not true. That is, we could not “uniquely” recover the
values of S, A from a given value of Q. This is called “unidentifiability”. The last
part of the equation (in Eq. 8.1) solves this “unidentifiability” problem by pro-
viding “forward-mapping”.

A better modification of Eq. (8.3) is provided below as Eq. (8.5). In Eq. (8.5)
the last part as provided in the Eq. (8.3) is slightly modified. Though by subtracting
a constant the values get slightly off-targeted, that does not affect the learning much
as the value comparison is still intact. Moreover, the equation in this form adds to
the stability of the optimization.

Qðs;a;h;a;bÞ ¼ Vðs;h;bÞ þ ðAðs;a;h;aÞ � 1
Aj j

X
a

Aðs;a;h;aÞÞ ð8:5Þ

8.5 Dueling DQN 107



8.6 Summary

General Artificial Intelligence or the idea of a single algorithm or system learning
and excelling at multiple seemingly different tasks simultaneously have been the
ultimate goal of Artificial Intelligence. General AI is a step towards enabling
machines and agents to reach human level intelligence of adapting to different
scenarios by learning new skills.

The DQN paper by Deep Mind claims to making some progress in the creating a
system that could learn the essential skills to the requirements of 47 different types
of Atari games, even surpassing the best of the human adversaries’ scores in many
of these games.

Though DQN is very potent and could surpass human-level performance in
many games as claimed by its success on standardized Atari environments, it has its
own shortcomings. There are many enhancements that could be employed to
overcome these shortcomings. The Double DQN and Dueling DQN, both use 2
different Q Networks instead of a single Q network as used in DQN and aims at
overcoming the shortcomings of DQN though in slightly different manner.

The Dueling DQN also brings the concept of advantage or the incrementally
higher utility of taking an action over the base state’s absolute value. The concept of
advantage will be explored further in some of the other algorithms we will cover in
this book.

108 8 Deep Q Network (DQN), Double DQN and Dueling DQN



Chapter 9
Double DQN in Code

Coding the DDQN with Epsilon-Decay Behavior
Policy

Abstract In this chapter, we will implement the Double DQN (DDQN) agent in
code. As compared to a conventional DQN, the DDQN agent is more stable as it
uses a dedicated target network which remains relatively stable. We also put into
practice the concepts of MLP-DNN we learnt in Chap. 6 and have used Keras and
TensorFlow for our deep learning models. We have also used the OpenAI gym for
instantiating standardized environments to train and test out agents. We use the
CartPole environment from the gym for training our model.

9.1 Project Structure and Dependencies

Like that of the Q Learning code covered in Chap. 5, we continue to use the same
virtual environment (DRL) based on Python 3.6.5 and PyCharm IDE.

The additional requirements in this chapter are that of deep learning-based
dependencies and OpenAI gym’s environments (Fig. 9.1). For implementing deep
learning models, we have used the Keras wrapper over TensorFlow backend. From
gym we are using the “CartPole-v1” environment, but readers are encouraged to try
other environments as well, and this is as simple as changing this name in the
“environment” parameter.

The deep learning models are implemented in a very modular manner, and the
network configuration of the implemented MLP-DNN architecture could change
with respect to the number of hidden layers and the number of neurons in each
hidden layer.

As compared to the Q Learning code covered in Chap. 5, here to isolate the
concerns and make the code more modular, we have separated the Behavior Policy
class in a separate module. Also, we have implemented an additional policy the
“epsilon-decay” policy for selecting the actions. This policy is also implemented in
the behavior policy class. Users are encouraged to also run the code with the
previously implemented “epsilon-greedy” policy and compare the results and time.

Besides the behavior policy, we now have another module for the Experience
Replay Buffer class. This is the base level class from which all the other

© Springer Nature Singapore Pte Ltd. 2019
M. Sewak, Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-13-8285-7_9

109

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_9&amp;domain=pdf
https://doi.org/10.1007/978-981-13-8285-7_9


implementations of different types of experiences replay memory buffers could be
extended. In this code, we have implemented a Deque-based memory buffer which
stores the experiences sequentially and has a fixed capacity. Whenever a new
experience comes after the buffer is full, the oldest experience is deleted to make
way for the new experience. The required number of experiences (batch-size) is
retrieved for replay memory buffer randomly. Readers are encouraged to experi-
ment with implementing other priority buffer types and compare the results.

Last, we have added two more custom exceptions to make the code easier to
debug and experiment with for the readers. With these changes and enhancements,
the project folder structure looks as in Fig. 9.2.

Fig. 9.1 Requirements.txt

Fig. 9.2 Project structure for the DDQN project

110 9 Double DQN in Code



9.2 Code for the Double DQN Agent
(File: DoubleDQN.py)

9.2 Code for the Double DQN Agent … 111



112 9 Double DQN in Code



9.2 Code for the Double DQN Agent … 113



114 9 Double DQN in Code



9.2 Code for the Double DQN Agent … 115



116 9 Double DQN in Code



9.2 Code for the Double DQN Agent … 117



118 9 Double DQN in Code



9.2.1 Code for the Behavior Policy Class (File:
behavior_policy.py)

9.2 Code for the Double DQN Agent … 119



120 9 Double DQN in Code



9.2 Code for the Double DQN Agent … 121



122 9 Double DQN in Code



9.2.2 Code for the Experience Replay Memory Class (File:
experience_replay.py)

9.2 Code for the Double DQN Agent … 123



124 9 Double DQN in Code



9.2.3 Code for the Custom Exceptions Classes (File:
rl_exceptions.py)

9.3 Training Statistics Plots

See Figs. 9.3 and 9.4.

9.2 Code for the Double DQN Agent … 125



Fig. 9.3 Number of steps and total (un-discounted) rewards received in each episode

Fig. 9.4 Number of steps and total discounted rewards received in each episode

126 9 Double DQN in Code



Chapter 10
Policy-Based Reinforcement Learning
Approaches

Stochastic Policy Gradient and the
REINFORCE Algorithm

Abstract In this chapter, we will cover the basics of the policy-based approaches
especially the policy gradient-based approaches. We will understand why
policy-based approaches are superior to that of value-based approaches under some
circumstances and why they are also tough to implement. We will subsequently
cover some simplifications that will help make policy-based approaches practical to
implement and also cover the REINFORCE algorithm.

10.1 Introduction to Policy-Based Approaches and Policy
Approximation

Until now in this book, we focused on estimating different types of values. Initially,
we focused on state–value computation (as in classical DP), and then state–value
estimation (as in TD Learning). Subsequently, we drew our focus toward action–
value estimation (as in SARSA and Q Learning), and finally advantage (incremental
value) estimation (as in Dueling DQN).

While discussing Q Learning, we also introduced the concept of value
approximation. Since the value function in Q Learning and similar algorithms are
modeled using function approximators (or machine learning models, as we other-
wise refer to) therefore we called it value estimation process instead of value
computation or determination process. Any such value estimation process, which is
modeled using a value estimator and is not exact introduces some bias. Also note
that we modeled the value as output of approximation functions (as in Q Learning,
DQN, etc.) and started denoting the value (state–value or action-value) as a function
of the parameter of these functions. In the case of deep learning-based function
approximators (models), these parameters are the network weights which need to be
optimized.

Maximizing the reinforcement learning reward, under such notations would have
been equivalent to finding the set of weights which “optimizes” (as in mathematical
optimization) these total rewards received. This is done by minimizing the

© Springer Nature Singapore Pte Ltd. 2019
M. Sewak, Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-13-8285-7_10

127

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_10&amp;domain=pdf
https://doi.org/10.1007/978-981-13-8285-7_10


respective losses as an outcome of the training. Since in most of these occasions the
approximation function was (purposely) differentiable, one of the best suited
methods to optimize these functions proves to be computing the gradients of the
expectancy of reward function (by differentiating them) and then moving in the
direction of the gradient till a local “maximum is achieved so as to maximize the
reward expectancy.

The nonclassical reinforcement learning system is often a combination of
solutions to the underlying estimation problem and control problem. Optimization
of the estimation model’s loss function consummates the training of our function
approximator which could later be deployed to estimate the “optimal” value of a
state or action and serves to provide solution for the estimation subproblem. The
estimations from such value estimation model “combined with a specific policy”
(the policy provides solution to the control subproblem) help our agent take
appropriate action. We also discovered the on-policy and off-policy methods, which
would either have an inbuilt mechanism to strike a good balance between the
exploration of new states/actions or exploiting the existing training or a different
behavioral policy for that determines when to use the estimated values greedily and
when to explore further. So essentially the value estimation/approximation process
finally led to a single “action” being suggested corresponding to any given state that
the agent is in. This action is either directly determined or greedily chosen (as in
epsilon-greedy for instance) from the estimation process. So, the “policy” which
directly resulted in the agent’s action was not our focus throughout. Instead, the
“value” of the state/state-action combination was the key focus until now, and this
“value” form the basis of a mostly deterministic “policy”.

Now just take a moment’s pause and imagine why we were trying to estimate the
value and approximate the value function (state–value or action-value function)
when the whole intention was to take the best action. Remember we had a similar
discussion earlier when we moved from state–value computation/estimation to
action-value computation/estimation. Until then though we were still focusing on
estimating the value but reasoned that since the ultimate goal is to determine the
best action, therefore the action-value estimation-based approach could be a more
direct means of achieving our goal than following the state–value estimation-based
approaches. Using the same reasoning forward with respect to policy, we can argue
that approximating the policy function could be a more direct means of achieving
our goal than approximating the value function as we have been doing so far. So
essentially, we would now like to parameterize the policy itself as below:

phðajsÞ ¼ P½ajs; h� ð10:1Þ

This is the intuition behind most of the policy approximation-based approaches
that we will discuss in this book. Policy gradient-based approaches are very popular
under policy-based reinforcement learning paradigm. The policy gradient-based
approaches under Policy Approximation would mostly try to leverage the property
of differentiability (and hence computing gradient) of the (approximate) policy
function to optimize it. Also, as in the case of value approximation, we would

128 10 Policy-Based Reinforcement Learning Approaches



proceed with the focus on model-free (here the term model-free refers to the fact
that we may not be in a position to mathematical model the MDP completely and
hence have to rely on approximating it instead of knowing it) assumptions for
policy approximations.

10.2 Broad Difference Between Value-Based
and Policy-Based Approaches

The basic difference between the value-based and the policy-based approaches is
that in the value-based approaches we learn a “value function” from which the
“policy” is derived either explicitly or implicitly. Whereas in the policy-based
approaches there is no need to learn or derive the value function, and we learn the
“policy” directly. The value function is essentially nonexistent in policy-based
approaches. Though there exist some variants of hybrid approaches as well, for now
we will use this simple theme for the purpose of drawing intuitions for this chapter.

In “value-based” approaches, we derived the policy on the basis of the estimates
generated by an optimal (well trained) value function. Although the value function
was stochastic (that is it generates probabilistic estimate for selecting different
actions in a particular state using a given value approximation model assuming no
further updates to the model), the so implied policy in most of the implementation
of value-based approaches has been mostly deterministic. This is because the policy
in the case of value estimation approaches suggests a single action. This action
could be either the best action suggested by the estimation function or any random
action, but it lacks the suggested probability distribution for selecting across dif-
ferent actions.

Whereas in the case of “policy approximation” approaches, since the “policy”
itself is parameterized, it is “stochastic” [refer to Eq. (10.1)]. This essentially means
that for a given state, the policy may have varying probabilities of choosing dif-
ferent actions instead of choosing the “single” most optimal action. So, the
“policy-based” approaches would essentially draw samples from this “stochastic
policy” to refine their estimate of the policy parameter vector h in a direction (as in
the gradient) so as to optimize the policy which would subsequently enable the
agent that follows such policy to accumulate maximum cumulative reward. Again,
there are a dedicated series of models (like deterministic policy gradient and
variants) which are exceptions to this principle. But for now, we will use this
distinction to build our intuition further for the purpose of this chapter.

Since the value-based methods have “deterministic” or “non-stochastic” policy,
it could select only one action. This has a similar effect of choosing one action with
probability 1 and others with probability 0. Even in cases where the value difference
between different actions is arbitrary, and hence also negligible or very small, such
sort of deterministic (and hence absolute) action choice leads to discontinuous
changes in the approximated function, leading to challenges with “convergence-

10.1 Introduction to Policy-Based Approaches and Policy Approximation 129



assurance” of algorithms following the value function approach. This shortcoming
is not so much pronounced in the case of policy-based approaches as they could
stochastically suggest multiple actions with appropriate probabilities.

In case if the importance of this distinction for practical application is not well
realized, let us understand this with an example. Suppose during the initiation of a
sport (say cricket) match the captain has to “choose” (takes action of choosing)
between “heads” and “tails” in a toss (assumingly of an unbiased coin). If he wins
the toss then he has to take decision pertaining to that match (say to bat or to ball
first). Although the first decision (calling heads or tails) is supposed to be random
and arbitrary, and only the second decision (match strategy of batting or balling
first) is something that could influence the outcome of the match, using a deter-
ministic policy will end up forcing the agent to learn and determine whether calling
“heads” is better or calling “tails” is better in a toss given a particular state of the
match conditions and team compositions. As the readers would have realized that
here state (comprising of the match conditions and team compositions) will have no
bearing on the call decision for the toss. By forcing “deterministic” proposal for
actions/decision, we imply that there exists only “one” optimal action/decision, and
restrict the stochastic recommendations across multiple actions/decisions choose
one. A stochastic policy in this case could have recommended that with 50%
probability we call “heads” and with the remaining 50% we call tails. If we force to
train the approximation function under the assumption of existence of a “deter-
ministic” policy, where the underlying optimal “policy” is actually “stochastic”,
such approximation function’s training should obviously not converge. With ref-
erence to our example, convergence in training would have meant that we suc-
cessfully trained a model that could clearly identify with a high degree of precision
and recall that one action is better than all the other actions possible in a particular
state as we proceed with the training. Since such observations are contrary to the
ground truth, an attempt to train the model under such assumptions should fail to
converge.

Another distinction between the value-based approaches and the policy-based
approaches is that value-based approaches are suited mainly for scenarios with
small and discrete action space. In case of large action space or continuous action
space. A continuous action space could be considered as a special case of large
action space, with action space cardinality growing toward infinity. We have
already hinted in the earlier chapters some intuition for the reasons behind this
observation while discussing the algorithms in the value-based approaches, whereas
other reasons could also be implicitly understood from our discussion on stochastic
action probability in this section earlier.

Just to understand the reasons related to stochastic action probability which
makes the policy-based approaches more suitable for applications with large and
continuous action spaces as compared to value-based approaches let us take an
example. Proceeding from our initial example from the cricket theme, let us assume
that our agent needs to determine the optimal angle at which the batsmen should
play a stroke on a particular delivery to ensure that the ball reaches the boundary.
Each delivery from its start to the result that delivery is an episode in this example.

130 10 Policy-Based Reinforcement Learning Approaches



Assume the state here comprises two information. The first information is static for
a given delivery/episode and is updated as the baller starts to ball. The other state
information is dynamic which updates at a particular frequency, (say once every 1/
100th s). The static information types are the ball condition (say age, roughness),
pitch condition, field placements occupied or vacant (one hot encoded vector).
Whereas the dynamic state comprises the ball velocity, ball direction, the swing/
spin of the bowl, and the thrust generated by the swing of the bat, distance between
the closest point of bat and ball. The desired decision output from the agent is the
angle at which the bat should swing (for the given thrust and timing of the bat) to
ensure a boundary. Assuming that the decision needs to be precise to a minute of an
angle (1° = 60″), the action space here if discrete could be considered as a vector of
dimension 360 � 60 = 21,600 assuming the angle could be between [0°–360°].
Alternatively, the action space here ideally should not be a discrete action space but
a continuous one in the range [0°–360°]. This is because there is little difference in
the outcome between the bat swing between any two contiguous angles (precise up
to a minute of an angle), say 45°.0″ and 45°.1″, but a discrete action space,
especially in the case of value-based approaches have to select one of these angles
and reject the another. From the explanation until now, it should be clear why some
action criteria are better suited and more practical to be conceived as a continuous
action space even when theoretically we could conceive them as a discrete action
space with very high cardinality.

Continuing forward with the above example, let us assume that there is a fielder
placed in an isolated area of the field where the field boundary is the shortest. Let
the fielder’s angle from the batting point is 45°.0″. Assuming the players reach to be
similar, say 5°0″, in both the clockwise and anticlockwise directions, we have
equally high probability of scoring the boundary at angles <45°.0″ − 5°0″ (=40°.0″)
and angles >45°.0″ + 5°0″ (=50°.0″). In the case of policy-based approaches where
policy is stochastic, a similar probability distribution across these decision
boundaries could reflect this phenomenon. But in the case of value-based approa-
ches, even if the value of scoring the boundary may reflect a similar stochastic
pattern across the discrete action spaces around these angles, but the deterministic
action policy could only select one of the actions and has the reject the other. This
distinction is very important for cases where the action suggestions of the agent
have to feed into another intelligent system/agent/model that works on a large
strategical decision process/prediction to which this agent’s suggestions is one of
the many inputs.

As the readers would have realized from the above example why the capability
of taking actions in a continuous action space is so useful, and how the agents using
policy-based approaches are naturally suited to provide more effective outcomes
under these challenges. But the inherent capability of working well with large/
continuous action space for the policy-based methods as compared to the
value-based methods comes at a cost. For one, while “converging”, the
policy-based approaches could “converge” to a local “optimum”, instead of a
“global optima”, and for another “evaluating” a policy has very high variance and
could be highly inefficient for the policy-based approaches.

10.2 Broad Difference Between Value-Based and Policy-Based Approaches 131



10.3 Problems with Calculating the Policy Gradient

From the discussion in the previous section, it should be evident that the policy-based
approaches offer some valuable advantages over the value-based methods and are
worth considering. In some scenarios learning the policy directly may be simpler or
otherwise more effective. Also there may be instances where the action space is large
or continuous. Under these situations the policy-based approaches may offer distinc-
tive advantages beyond performance or accuracy considerations over value-based
approaches.

Also, as we discussed in the previous section, in policy-based methods, we are
interested in optimizing the policy approximator functions in order to maximize the
rewards. Also, we learnt that to optimize the policy approximator we may need the
gradient of the approximation function that represents this stochastic policy as
moving in the direction of this gradient may help minimize the losses and hence
optimize the policy. Alternatively, if the gradient is that of the reward function, we
can move in the direction of the gradient to maximize the expectancy of the
rewards.

But there exists a problem in implementing this theory in practice. To understand
this problem let us understand mathematically what we are trying to do. Let us take
a policy denoted by p. This policy p parameterized over the parameter vector h. The
value of this policy p could be defined as the expectancy of the (discounted)
cumulative rewards following this policy. Similar to symbols V for denoting state–
value and symbol Q denoting action value, we would use the symbol “J” to denote
the value of the Performance of policy p. The policy value J could be mathe-
matically defined as Eq. (10.2) below p.

JðhÞ ¼ E

X
t� 0

½ctrtjph� ð10:2Þ

Therefore, the most optimal parameter vector (h�) will maximize this expected
reward value following this policy, such as

h� ¼ argmax
h

JðhÞ ð10:3Þ

Now let us introduce a new term, “trajectory”. We will use the symbol s (called
“tau”) to denote “trajectory”. The trajectory here refers to the sequence of states
visited in an episode. In a stochastic policy, the next action and hence the subse-
quently visited state need not be deterministic. Hence even under a given stochastic
policy, different sequences of states could be visited with varying probabilities. Any
such sequence of visited states (by taking some action and receiving the corre-
sponding instantaneous rewards) at different time steps in an episode is called a
trajectory. The trajectory s could be represented by s = [(s0, a0, r0); (s1, a1, r1); …;
(st, at, rt)].

132 10 Policy-Based Reinforcement Learning Approaches



The trajectory is influenced by the state-transition probabilities under a given
policy. So, in terms of the trajectory, Eq. (10.2) for the policy value J could be
rewritten as Eq. (10.4) below:

JðhÞ ¼ E
s

X
Pðs; hÞrðsÞ ð10:4Þ

This equation simply says the performance value of a given stochastic policy
could be expressed as the expectancy of reward in a particular trajectory under a
policy, weighed by the probability of attaining that trajectory under that policy.
Since Expectancy could be integrated, so we further represent the above expression
of expectancy over the different trajectories using integration (so that we could
demonstrate the differentiation step easily) as

JðhÞ ¼
Z
s

rðsÞPðs; hÞs ð10:5Þ

To obtain the gradient of the above expression, the function J needs to be
differentiated with respect to the parameters h as below:

DhJðhÞ ¼
Z
s

rðsÞDhPðs; hÞs ð10:6Þ

Equation (6) is difficult to solve because of mathematical “intractability”. An
intractable problem mathematics are the ones for which there exists no mathe-
matical formulation to solve these problems efficiently. Equation (6) is intractable
due to the fact that in the above equation we are trying to differentiate a function p
(s; h) over the parameter (vector) h when that function is itself conditioned (or
depends) on the same parameter. So, in the exact mathematical solution, it is
difficult to implement policy gradient method. Therefore, next, we will learn about a
very important algorithm called “REINFORCE” and the associated mathematical
simplification of the above equation to solve this problem.

10.4 The REINFORCE Algorithm

The REINFORCE algorithm was proposed by Ronald J. Williams. Ronald also
gave some mathematical simplification to Eq. (10.6) above so as to implement it in
the proposed algorithm. Under limiting conditions, the differential of part of
Eq. (10.6) causing intractability could be rewritten as Eq. (10.7a, 10.7b) below:

10.3 Problems with Calculating the Policy Gradient 133



DhPðs; hÞs ¼ Pðs; hÞDhPðs; hÞ
Pðs; hÞ ð10:7aÞ

Or under limiting condition Eq. (10.7a) could be rewritten as Eq. (10.7b):

DhPðs; hÞs ¼ Pðs; hÞDh logPðs; hÞ ð10:7bÞ

Therefore, rewriting Eq. (10.6) under this limiting form we have Eq. (10.8)
below:

DhJðhÞ ¼
Z
s

ðrðsÞDh logPðs; hÞÞPðs; hÞds ð10:8Þ

Rewriting Eq. (10.8) in Expectancy form, we get Eq. (10.9) as below:

DhJh ¼ E
s�Pðs;hÞ

½rsDh logPðs; hÞ� ð10:9Þ

This is one part of the intended mathematical simplifications. In the above form,
the method could be implemented using “Monte Carlo” sampling. In Monte Carlo
sampling is we can simulate multiple experiments corresponding to a given policy
and extract data from these experiments. REINFORCE method therefore could also
be referred to as Monte Carlo approach to policy gradient or simply “Monte Carlo
Policy Gradient”. But there exists another practical (not necessarily mathematical)
problem in implementing this yet. This is of knowing the Pðs; hÞ, that is the
probability of different trajectories themselves under a given policy. Therefore, now
even though we could solve this mathematically, but we have no efficient way to
obtain the necessary trajectory probability in advance. This problem is also solved
by slightly altering the mathematics of this equation as below:

Pðs; hÞ ¼
Y
t�0

Pðstþ1jst;atÞphðat givn stÞ ð10:10Þ

Since under Markov Decision Process (MDP), we assume that a given state once
achieved is independent of previous happenings, so under this conditional inde-
pendence assumption, we could essentially multiple the subsequent state-transition
probabilities in a trajectory to obtain the overall trajectory probability as shown
above in Eq. (10.10). Thus, the log p (s; h), could be rewritten as below:

logPðs; hÞ ¼
X
t�0

logPðstþ1jst;atÞþ log phðatjstÞ ð10:11Þ

Hence the differential of this formulation of log p (s; h) does not depend upon
the trajectory probability distribution as earlier. It only depends on a series of
state-transition probability as we were using earlier in some of the other algorithms.

134 10 Policy-Based Reinforcement Learning Approaches



This simplifies Eq. (10.11) further and removes the requirement to trajectory
probability as can be seen below in Eq. (10.12).

Dh logPðs; hÞ ¼
X
t�0

Dh log phðatjstÞ ð10:12Þ

Therefore, rewriting Eq. (10.9) for the gradient of policy value J to replace the
trajectory probability distribution with the above form as in Eq. (10.12), we have
Eq. (10.13) as below:

DhJðhÞ �
X
t� 0

rðsÞDh log phðatjstÞ ð10:13Þ

10.4.1 Shortcomings of the REINFORCE Algorithm

Even with the different mathematical simplifications and algorithmic enhancements,
REINFORCE algorithm is not used in practice. This is because the gradient so
obtained using the REINFORCE method has very high variance.

One reason for such high variance is the form in which the rewards that are used
in REINFORCE. In REINFORCE absolute rewards are used, and with each
experiment of Monte Carlo, the rewards may vary a lot. This leads to a very high
variance in the so obtained gradient. But nevertheless, the two mathematical
enhancements that we discussed, are very important to know and understand as
most of the policy gradient approaches use some part of REINFORCE algorithm
especially the mathematical simplifications and develop further. Later we will
discuss how some algorithms take these enhancements and slightly modify the
computation to overcome this high variance problem.

Yet another reason for this high variance is the attribution of the reward to the
specific state-action instances in the trajectory. Since REINFORCE in a sense
averages out the rewards in a given trajectory, so if the rewards are due to some
specific good state-action decisions only, and not because of most of the other state
actions in the same trajectory/experiment, it becomes challenging to get the correct
and specific attributions to those state actions alone. This effect further leads to high
variance.

10.4.2 Pseudocode for the REINFORCE Algorithm

The above equations could be implemented in an iterative “Monte Carlo” like
approach using the below pseudocode.

10.4 The REINFORCE Algorithm 135



where vt is the unbiased estimate sample of Qph (st, at), and a is the step size.

10.5 Methods to Reduce Variance in the REINFORCE
Algorithm

As we discovered in the earlier section on the shortcomings of the REINFORCE
algorithm, the practicality of the REINFORCE algorithm is severely restricted
because of the variance in the policy gradient. This high variance was mainly due to
the fact that we were not able to deterministically and specifically identify which
actions attributed to the reward in a given trajectory. This in turn meant that we
were not able to positively move the gradient so that the subsequently updated
policy could favor the best rewarding actions and restrict the gradient to discourage
the actions which were not so rewarding. In this section, we will discuss some
approaches that we could use to overcome this problem in the REINFORCE
algorithm.

It should be pointed out that some of these approaches to reduce variance that we
will be discussing next and their subsequent variants are common to most of policy
gradient-based approaches and not just the REINFORCE algorithm. Hence, the
techniques that will be discussed are also the basis of some of the other algorithms
that fall under “policy-based approaches”. So, we would carry forward some part of
this discussion to later chapters when we would discuss those algorithms.

10.5.1 Cumulative Future Reward-Based Attribution

We discussed earlier that the gradient of the policy-estimation function (policy
estimator) could be represented as Eq. 10.13

function REINFORCE 
Initialise  arbitrarily 
for each episode {(s1, a1, r2), ...,(sT 1, aT 1,rT)} do

for t = 1 to T  1 do
 + log (st , at)vt

end for
end for
return

end function

136 10 Policy-Based Reinforcement Learning Approaches



As we notice, in this form the attribution of reward (or penalties) that has been
received in the past is also given to all the actions in the trajectory, even the actions
that occur in the trajectory after receiving the specific instantaneous reward (future
actions). That makes little sense.

For example, assume that in the grid-world example that we discussed earlier,
one of the actions in a particular state made you lose 100 points (penalty) by
moving to the ditch. Can this penalty be rightly attributed to an action in any other
given state, say the last state just before you reached the “treasure-state” that led
you to the receive the “treasure”? Obviously, such attribution does not seem correct.

Though we are not sure which specific future action could be attributed in which
proportion to the subsequent future rewards, but we could at least say that any
reward being realized before a particular action (in a particular state) could not be
attributed to an action (as suggested by the policy) after realizing the reward.
Therefore, we would slightly change Eq. (10.13) to restrict the attribution of only
future cumulative rewards to any current actions or particular policy decision
(action in a particular state). This could be expressed as Eq. (10.14) below:

DhJðhÞ �
X
t� 0

X
tPim � t

rðsÞ

0
@

1
ADh log phðatjstÞ ð10:14Þ

10.5.2 Discounted Cumulative Future Rewards

As we discussed in the earlier section, changing the attribution from all rewards to
all-future-rewards helps. We also discussed that we wanted to avoid equal attri-
bution to all future actions (policy decisions). One way of doing this is by dis-
counting the future rewards before attributing them to a given action. This ensures
that the more recent actions/policy decisions get higher attribution for any
upcoming rewards that the ones that occurred very early in the sequence. As we
discussed earlier in this book, the intuition behind this is that more recent actions
may better determine the realization of a reward, than something that has happened
much earlier.

Modifying Eq. (10.14) to include the discounting parameter c and raising it to
the step/time difference between the action and the reward realization, we get
Eq. (10.15) as below:

DhJðhÞ �
X
t� 0

X
tPim � t

ct
Pim�trðsÞ

0
@

1
ADh log phðatjstÞ ð10:15Þ

10.5 Methods to Reduce Variance in the REINFORCE Algorithm 137



10.5.3 REINFORCE with Baseline

In the present form as Eq. (10.15) stands, we have the ability to move aggressively
in the direction the gradient that ensures higher rewards, and conservatively in the
direction of the gradient that ensures less rewards. Continuing with the same theme
of identifying and attributing the rewards/penalties to the correct actions, we need to
start differentiating between better and worse rewards.

For illustration, let us take our grid-world example further. If from a particular
state no matter where we move, we will get some positive reward, and the only
thing that differs is either the quantum of reward or how delayed the response is (the
delay or late rewards in turn will get reflected as the quantum of reward as well if
discounting is used). We can end up moving in the direction of less favorable
rewards as well (although slightly slow) along with moving in the direction of the
more optimal rewards (although faster as compared to our movement in the
direction of less rewarding actions). This is clearly counterproductive, as we intend
to differentiate and identify the best action as lucidly and as soon as possible (from a
training perspective). To ensure that we clearly identify the actions which we
should have concentrated moving only toward the most optimal reward, even
moving away from actions that lesser rewards even if these are positive rewards.
This is because these actions have the opportunity cost associated with them. In the
same step that we took a less rewarding action, we could have instead taken a more
rewarding action. So, we need to now start differentiating across the actions with
respect to their quantum of rewards as well.

So as to achieve this objective, we need to understand how much action is better
or worse than a “baseline” scenario. This “baseline” could simply be a constant.
But as such a constant baseline does not optimally serve the purpose to positively
rewarding the better actions and negatively reward the not-so-good actions.
Reflecting back to our discussion on “advantage” in the “Dueling DQN” algorithm,
we had a similar discussion, and we discussed that the “advantage function” helps
us identify the relative advantage of a given action in a particular state over the base
value of the state. We were thus able to differentiate quantifiably across different
actions permissible in a state. So, essentially, we used the Value of the state as the
“baseline” (value) for any action permissible in that state. We would do a similar
thing here and take a baseline reward value for a particular state and take a dif-
ference of the actual (future and discounted) rewards received with this baseline to
assess the goodness, or in this case also worseness (in case if the difference is
negative) with this baseline. This could be implemented as Eq. (10.16) below:

DhJðhÞ �
X
t� 0

X
tPim � t

cðt
Pim�tÞrðsÞ � bðstÞ

0
@

1
ADh log phðatjstÞ ð10:16Þ

138 10 Policy-Based Reinforcement Learning Approaches



10.6 Choosing a Baseline for the REINFORCE Algorithm

In the previous section, we identified that using a baseline reward value for each
state may help distinguish a good action from a better one or a worse one, and
hence also help in reducing the variance of the gradient of the REINFORCE
method. We briefly also discussed the “advantage” function that we dealt in the
“Dueling DQN” algorithm. But in a policy gradient-based REINFORCE we do not
want to get into the state–value V(s) calculation (for now) and want a simpler
baseline that can reflect some good indication of average (future, discounted)
rewards from a particular state.

To achieve this one could come up with different types of baseline. Some of such
baselines are presented in different research literature. One such “baeline” could
be a constant moving average of the cumulative future discounted rewards received
from all the trajectories which pass through this particular state. Since such rewards
are computed in the REINFORCE algorithm itself, we do not need an external
value computation function to enable this, and the resulting implementation could
be simple and straightforward.

Yet another, more expressive baseline could be to take the actual advantage of a
given action in a particular state, which is represented by the difference between the
Q value of that action in that state and the state–value V of that state as [Q (s, a) − V
(s)]. Also, since Q and V values already have a sense of reward inbuilt in them and
a good treatment for differentiating across different types of future rewards and
discounted rewards, we need not bother about including such factors separately.
Therefore, Eq. (10.16) could be modified to replace the explicit reward and baseline
as a composite reward with baseline using Q and V functions as Eq. (10.17) below:

DhJðhÞ �
X
t� 0

Qph;ðst ;atÞ � Vph;ðstÞ
� �

Dh log phðatjstÞ ð10:17Þ

10.7 Summary

As opposed to value-based approaches, in which although the value estimates are
stochastic, but the policy itself is deterministic, the policy-based approaches pro-
vides a mechanism to have a stochastic policy. Policy-based approaches are more
direct as we are directly exploring the policy that takes action decisions instead of
first estimating the values and then forming a policy based on such value estimates.
Policy-based approaches also provide a better mechanism to work with scenarios
having large action space and can also work with scenarios that require continuous
action control.

But it is difficult to implement a policy-based approach, especially the policy
gradient-based approaches. One reason for this is that the mathematics for finding
the gradient of the policy value is intractable. With some simplifications and

10.6 Choosing a Baseline for the REINFORCE Algorithm 139



limiting assumptions, we were able to overcome this issue and implement in a
Monte Carlo simulation-based algorithm called REINFORCE. But the resulting
format of mathematical simplifications leads to a solution that has a lot of variance
in gradient computation.

With some further assumptions and techniques leading to correct reward attri-
bution for future rewards and reward baseline, we were able to bring down the
variance in gradient computation in the REINFORCE algorithm. Such enhance-
ments are not just limited to the REINFORCE algorithm but will go a long way
forward in making other advanced policy-based approaches more practical to
implement thereby opening the gates for more powerful reinforcement learning for
real-life scenarios having large action space to work with and for scenarios
requiring continuous actions control.

140 10 Policy-Based Reinforcement Learning Approaches



Chapter 11
Actor-Critic Models and the A3C

The Asynchronous Advantage Actor-Critic
Model

Abstract In this chapter, we will take the idea of the policy-gradient-based
REINFORCE with baseline algorithm further and combine that idea with the
value-estimation ideas from the DQN, thus, bringing the best of both worlds
together in the form of the Actor-Critic algorithm. We will further discuss the
“advantage” baseline implementation of the model with deep learning-based
approximators, and take the concept further to implement a parallel implementation
of the deep learning-based advantage actor-critic algorithm in the synchronous
(A2C) and the asynchronous (A3C) modes.

11.1 Introduction to Actor-Critic Methods

Until now, we have covered two different approaches in this book to solve the
Reinforcement Learning problem, namely the value-estimation approach and the
policy-gradient approach. The value-estimation approach had the advantage of
being mathematically simple and easier to implement. It could even be imple-
mented in an online approach. Some value-estimation approaches, especially the
single-step approaches (as the ones based on TD (0)) could even be implemented in
a truly online manner and are applicable even for continuous non-episodic tasks.
The policy estimation approaches, on the other hand, were superior in terms of
directly approximating the policy instead of indirectly estimating the values, and
then determining the policy on the basis of the value. Also, policy estimation
methods could be employed for tasks with large action-space cardinality and even
for tasks requiring continuous action control (a limiting case with infinitely large
action space).

The policy approximation approaches are difficult to implement because of their
underlying intractable mathematics. With some simplifications, the REINFORCE
algorithm provided a decent solution to implement policy-gradient approach using
a Monte Carlo-like approach. Because of the inherent Monte Carlo-like

© Springer Nature Singapore Pte Ltd. 2019
M. Sewak, Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-13-8285-7_11

141

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_11&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_11&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_11&amp;domain=pdf
https://doi.org/10.1007/978-981-13-8285-7_11


implementation, REINFORCE has issues in not being able to provide a true online
solution and having a wide variance in the gradient approximation. REINFORCE
with baseline provided a decent solution for the variability problem as discussed
above. Of the different types of baselines, the state-value-based baseline is a
straightforward one but we need to estimate the state-value externally somehow.
Another way to get a good baseline that could reduce this variance is using the
“advantage” estimates as the baseline.

With the use of “advantage” estimates as a baseline in the REINFORCE, the
setup looks similar to that of the Dueling DQN that we discussed in Chap. 5. But
apart from the concept of “advantage”, there were not much of similarity between
the Dueling DQN and the REINFORCE algorithm, as both are from a completely
different family of algorithms and have different approaches and very different
mathematics empowering them.

Introspecting carefully, we could see that the value-estimation and policy
approximation-based approaches to a large extent complement one another. The
weakness of one is nearly the strength of another. Therefore, combining the best of
ideas from both the approaches may provide a very promising solution that com-
bines their strengths. Also, we have learnt so far that the Q-Learning family of
algorithms are the state-of-the-art methods in the value-estimation-based
Reinforcement Learning, and REINFORCE with baseline is so far the only
decent solution we have in the policy-gradient-based reinforcement learning
approach. Combining these two approaches gives us the Actor-Critic method as
shown in Fig. 11.1 ahead.

Fig. 11.1 Actor-critic methods inspiration

142 11 Actor-Critic Models and the A3C



11.2 Conceptual Design of the Actor-Critic Method

At the very basic, as the name suggests, the actor-critic model consists of an actor
and a critic. The role of the actor, again as the name suggests is to take an action. As
we would have realized earlier that in the context of Reinforcement Learning, to
take an action, we require a policy. So, the actor in the case of the actor-critic
implements and uses a policy to take any action.

The critic, on the other hand, again as the name suggests, plays the role of a critic
for the actor and provide feedback with respect to the goodness (or worseness) of
the action taken by the actor when in a given state.

The actor and the critic work in tandem this way (Fig. 11.2). The actor plays an
active role to engage with the environment to act upon it and change it. The
resulting rewards are received by the critic, which updates and corrects its estimates
and updates the actor with the corrected value of its estimates which helps the actor
to update itself.

The environment subsequently changes as a result of the action taken by the
actor and besides the instantaneous reward the environment also sends the new state
reached as a result of the action taken. The new state is sent to both the actors,
which uses it for taking the action and to the critic which uses it for evaluating its
value estimates. This is shown in Fig. 11.3.

Fig. 11.2 Role of actor and critic

11.2 Conceptual Design of the Actor-Critic Method 143



11.3 Architecture for the Actor-Critic Implementation

Let us dive deeper into the internal mechanics of the actor and the critic. To take
any action in reinforcement learning, we require a policy. In the actor-critic model
since the actor is taking the action, so this policy is needed to be with the actor. The
actor, hence, has a (stochastic) policy which it uses to take an action in every step of

Fig. 11.3 Conceptual design of the actor-critic method

144 11 Actor-Critic Models and the A3C



training, while also improving updating its policy (approximation) using the
policy-gradient approach quite similar to what we have discussed in the last chapter.
The actor’s policy is updated continuously during training, and for updating this
policy, it uses the (state) value estimates as received from the critic. The critic’s
value estimates serve as a baseline for the actor to update its policy using the
policy-gradient approach (Fig. 11.4).

Though the “REINFOCE with baseline” algorithm also uses the estimates of
state value as a baseline, but the state value as used in REINFORCE algorithm for
baseline is not bootstrapped. That is, the value of the state does not update itself in
each iteration as it does in the Q-Learning, and hence, it cannot be called a critic,
because a “Critic” is essentially bootstrapped, and therefore for a critic, it is
essential that the value estimates are updated in every iteration. The error between
the subsequent state values estimates is computed using the instantaneous reward
and discounted state value of subsequent state as shown below in Eq. (11.1). In this
equation, c is the discounting factor. The below Eq. (11.1) corresponds to one-step
return updates, which is similar to TD (0) without the eligibility traces (or a special
case of eligibility trace). If required, this equation could be expanded to an n-step
update. In Eq. (11.1), V is the state-value estimator function parametrized by
weight/parameter vector W. Since it’s a bootstrapping approach as explained above,
so with every step, the weight vector of the value estimator function also needs to
change at every step. So, at the tth step, this parameter vector could be denoted as
Wt. The value for any terminal state is set as 0.

Fig. 11.4 High-level architecture for the implementation of actor-critic method

11.3 Architecture for the Actor-Critic Implementation 145



dt ¼ Rt þ cVðStþ 1;WtÞ � VðSt;WtÞ ð11:1Þ

Once the error at time t is estimated as in Eq. (11.1), in each bootstrapping step
subsequently, the value estimator function of the critic is then updated. Since the
value estimator function is parametrized by weight vector W, updating the weight
vector W from Wt to Wt+1 as in Eq. (11.2) in each iteration updates the value
estimator function. In Eq. (11.2), aw represents the learning rate for this value
estimator function.

Wtþ 1 ¼ Wt þ awdtDwVðS;WtÞ ð11:2Þ

Similar to the update of value estimator function of the critic, the policy esti-
mator function of the actor also updates in each iteration as shown in Eq. (11.3)
below. In Eq. (11.3), p is the policy estimator function, which is parametrized over
parameter vector h. The parameter vector h also updates in each iteration to ht+1
from ht as shown in Eq. (11.3), and ah acts as a learning rate for the update of policy
estimator function.

htþ 1 ¼ ht þ ahdtDh log pðA j S; htÞ ð11:3Þ

11.3.1 Actor-Critic Method and the (Dueling) DQN

In the chapter on Deep Q-Networks, we covered the Deep Learning approaches to
action-value estimation and discussed how the Deep Learning-based estimators are
superior to conventional machine learning based and other iterative estimators,
especially in the case of applications have large state-spaces cardinality like the one
using images and video feeds for input/observation.

In the case of Policy approximation, we use the stochastic policy-gradient
approach like that of “REINFORCE with baseline” as we discussed in the chapter
on policy-based approaches. But we would implement the estimator/approximator
function of this as an online Deep Learning model, which could update the policy in
a true online manner instead of the Monte Carlo simulation-like approach of the
REINFORCE. The Convolutional Neural Network-based models would be ideal for
this, especially as in many of the real-life cases, we might be processing images/
video feeds as input states.

The “REINFORCE with baseline” algorithm required a baseline so we would
need some mechanism to have such a baseline here as well, we could use the
State-Value estimates for this. Also, as we have discussed earlier in this chapter,
since we want a critic whose value updates/bootstrap with every iteration and not
just any simple baseline, we could use an online Deep Learning Network for the
(State) Value-estimation piece as well. Similar to the Deep Learning model of the
policy estimator, the Deep Learning model of the Value estimator also needs to be

146 11 Actor-Critic Models and the A3C



updated in every iteration to provide the online bootstrapping effect that would
make it a true critic (Fig. 11.5).

Since we require two Deep Learning-based function approximators here, one for
the policy estimation (the actor) and another for the value estimation (the critic), and
since both the approximators would require the common state inputs, so by sharing
the deep learning network’s architecture to as much extent possible between these
two network requirements, we can notonly make the computations more efficient,
but also ensure that the underlying processing of the input state and hence, the
interpretation of the received state is common for both the actor and the critic, hence
can ensure better coordination between them.

This idea is very similar to the one in the Dueling DQN networks that we
discussed in the chapter on Deep Q-Learning. We also discovered in that chapter
that the Dueling DQN owing to this unique architecture is more powerful than the
simple DQN and could surpass its performance on standardized tests. With the
similar implementation as earlier with Dueling DQN, we would share the
Convolution Layers in the architecture between both the networks of the actor and
critic approximators and have dedicated fully connected layers for both of them that
leads to their respective output layers.

The actor needs to output a stochastic policy. So, for discrete action space, the
actor-network needs to end in a SoftMax activation layer with as many numbers of
neurons as the cardinality of the action space, with each neuron’s output repre-
senting the probability of taking that action. The output of the actor-network rep-
resents the probability of goodness of each action for a given state and ranges
between [0, 1], where the sum of probabilities across all possible actions is 1.

The critic network needs to output the value estimates for the input state/
observation as received from the environment such that it could be used as a
bootstrapped baseline for the policy estimator. Since this estimate is a single real

Fig. 11.5 Illustrative CNN-based implementation of actor-critic with state-value-based critic

11.3 Architecture for the Actor-Critic Implementation 147



value, which is also a continuous linear output, therefore, the critic network ends in
a single node with “Linear Activation” to represent this value. While using Deep
Learning, it is always good to scale the values. So, in the actual implementation in
some cases, this value may not be the absolute state value but some scaled repre-
sentation of the same.

11.3.2 Advantage Actor-Critic Model Architecture

While discussing the enhancements for the REINFORCE algorithm in the chapter
on policy-based approaches, we discussed that one of the desirable enhancements
would be to use “advantage” estimates instead of other baselines like a constant
baseline value as baseline, or a moving average or even the absolute state value. We
also discussed that how by using the “advantage” as a baseline the variance in the
gradients of the agent/actor’s approximation function could be reduced, thereby
making it learn faster.

Also, in the chapter on Dueling DQN, we saw that instead of computing the
Action-Value, these algorithms find it more optimal to naturally estimate the “ad-
vantage” instead. We merge these ideas, here, the make the critic generate a
bootstrapped “advantage” estimate instead of the state-value estimate. Since the
“advantage” estimates generated by the critic is bootstrapped, it still is considered a
true critic and it also updates its approximation function in every iteration. The
subsequent “advantage” estimate from the critic is fed into the actor, which uses it
as a baseline (Fig. 11.6).

With REINFORCE, since it was already difficult to implement the algorithm,
and since the “advantage” estimates required a separate computation so many a
times “advantage” is not used to trade in for simplicity in the case of REINFORCE

Fig. 11.6 Illustrative CNN-based implementation of “advantage” actor-critic

148 11 Actor-Critic Models and the A3C



algorithm’s implementation. But in the case of Actor-Critic, especially the Deep
Learning-based implementations of Actor-Critic, since the implementation com-
plexity is not very different from that of the state-based baseline implementation in
a similar deep learning-based approach, the “advantage” based implementation is
preferred in the case of Actor-Critic and many of the works in the literature uses this
variant.

11.4 Asynchronous Advantage Actor-Critic
Implementation (A3C)

In the case of Q-Learning, when we enhanced the underlying mechanism of
function approximators and replaced them with the powerful Deep Learning
models-based approximators like the Convolution Neural Networks, we got a
model that surpassed all known models’ performance, and even human adversaries’
performance at many tasks. Now when we combine the best of value/
advantage-estimation approaches, the best of policy approximation-based approa-
ches and the best of Deep Learning enhancements then though it is sure to tick all
the right boxes in the performance area, but the only drawback of this system that
could be envisaged is that the efficiency of such algorithmic implementations over
complex input states would be found lagging.

But fortunately, Deep Learning could be massively parallelized over Graphical
Processing Units (GPUs). This is exactly how even the Advantage-based
Actor-Critic algorithms with Deep Learning models are implemented, but still, it
requires a lot of time to train for each iteration of the agent sequentially. Another
problem of this sequential single-agent approach is what we have already discussed
in the chapter on DQN, which is that related to frequent correlated sequential input
states that could lead to instability and bias-related issues, finally leading to
convergence-related problems for the approximator. We also discussed some of the
workarounds like using experience replays from a prioritized memory buffer to
solve this problem. But with the size of network at hand, we would require a very
large memory buffer for an effective training in the case of sizeable actor-critic
implementations.

A better approach as suggested by the team at DeepMind is the use of
Asynchronous agents for the Actor-Critic Advantage (A3C) design (Fig. 11.7). In
this approach, instead of a single-agent learning in sequence, multiple agents are
spawned simultaneously and they all train in parallel (across multiple GPU cores)
across different instances of the environment.

There exists a global centralized network parameter server to store the param-
eters for both the actors and the critics. Any new agent that spawns, copies the
current values of the parameters from the global networks parameter server and
updates their copy of the parameters while training with their instance of the
environment independently. After some fixed steps, or reaching the terminal state,

11.3 Architecture for the Actor-Critic Implementation 149



the agents would merge their updates with the global parameters as in the cen-
tralized parameter server, then copy the now updated global network parameters,
and resume interacting with their respective instance of the environment.

Since each agent has their own copy of the environment, essentially each agent
is working on different and uncorrelated states (from different instances of the same
environment class), and hence, the subsequent global updates are uncorrelated. This
brings the stability in the training and obviates the need for provisioning very large
memory for experience replays for each agent individually.

The Asynchronous Advantage Actor-Critic (A3C) model implementation could
be considered as the state of the art in Deep Reinforcement Learning. The
Asynchronous Advantage Actor-Critic Model did not only play as well or better
than the DQN in the Atari 2600 games and many more, but it could achieve the
DQN level performance in half the time that DQN took, and that too while training
on CPUs instead of GPUs. Of the different asynchronous parallel implementation of
the algorithms like SARSA (0), Q-Learning (n-step), and the Actor-Critic (A3C),
the A3C was found to have delivered the best results.

11.5 (Synchronous) Advantage Actor-Critic
Implementation (A2C)

The Asynchronous Advantage Actor-Critic (A3C) is the parallel implementation of
the (nonparallel) Actor-Critic advantage architecture that we covered earlier. A3C
implementation works very well and has demonstrated its effectiveness on the

Fig. 11.7 High-level idea of the A3C

150 11 Actor-Critic Models and the A3C



Atari2600 and other standardized reinforcement learning challenges. But there is
one drawback in A3C, that is that since different parallel agents are asynchronously
and independently syncing with the global network parameters in the centralized
parameter server, all the agents are for some duration working with an outdated
copy of the network parameters. Also, since the last sync of any particular agent
with the global network parameters, some other agents could have updated the
network parameters, then when this agent comes back to update the global network
parameter again, it updates the global parameters which are based on its initial
synced copy of parameters, which is outdated by this time. Because of this, the
training is not very stable and the convergence may not be very smooth.

To avoid this phenomenon, a synchronous variant of the parallel implementation
of the Advantage Actor-Critic (A2C) is also proposed (Fig. 11.8). But this proposal
has been only in the form of some blogs with not many standardized comparisons
of the performance results available for this proposal’s implementation in a standard
research literature.

Fig. 11.8 High-level idea of the (Synchronous) A2C

11.5 (Synchronous) Advantage Actor-Critic Implementation (A2C) 151



In the Synchronized parallel A2C, instead of all agents syncing with the global
network parameter as in the centralized parameter server asynchronously, they are
all made to update in a synchronous way. As all the agents work synchronously and
make the updates at the same time, they all need not update the global network
individually and directly.

The synchronous parallel A2C works much like a mini-batch gradient update,
and since the number of steps is same across each agent, a simple average of the
updates of all agents’ gradients updates could be computed and the global network
parameters updated with this computed average gradient updates.

This work of coordinating across all the independent agents is done by a system
called the “coordinator”. Since all the agents are similar and updates synchronously
after the same number of steps so in practical implementation, different agents need
not be spawned and the same agent with different instantiations of the environment
class could give the intended effect.

11.6 Summary

The policy-based approaches, especially the Policy-Gradient-based approaches are
very promising but at the same time also not very easy to implement. The
Value-estimation-based approaches are easy to implement but not as good as their
policy-gradient counterparts. Combining the two gives us the Actor-Critic algo-
rithm, which brings the best of both worlds for reinforcement learning imple-
mentations. As opposed to the “REINFORCE with baseline” algorithm, the
baseline updates in Actor-Critic are bootstrapped and hence works like a critic.

In the actor-critic model, the actor and the critic work in tandem to form an
agent. The actor actively engages with the environment to manipulate it. The critic
provides the baseline estimates for the agent’s update, and in turn, receives the next
state from the environment to update itself similar to that in an online
value-estimation method. The actor-critic thus requires two function approximators,
one for the value estimator of the critic and another for the policy approximator of
the actor. These two model networks could ideally be deep learning-based models
as well, and in that case, they could also share a substantial part of their network
(like CNN layers) architecture, especially the part of the model architecture that
extracts features from the incoming state.

Multiple agents of the actor-critic model could even work in parallel to interact
with their individual instances of the environment thereby not only making the
training faster but also removing a lot of bias and obviating large memory
requirements. The parallel approach could be implemented in both synchronous and
asynchronous manners. The Asynchronous Advantage Actor-Critic (A3C) imple-
mentation has been quite successful in surpassing many best scores of previous
models across the Atari2600 games.

152 11 Actor-Critic Models and the A3C



Chapter 12
A3C in Code

Coding the Asynchronous Advantage
Actor-Critic Agent

Abstract In this chapter, we will cover the Asynchronous Advantage Actor-Critic
Model. We use the TensorFlow’s own implementation of the Keras for this. We
define the actor-critic model using the Sub-Classing and eager execution func-
tionality of Keras. Both the master and worker agents use this model. The asyn-
chronous workers are implemented as different threads, syncing with the master
after every few steps or completion of their respective episodes.

12.1 Project Structure and Dependencies

Like that of the Q-Learning code covered in Chap. 9, we continue to use the same
virtual environment (DRL) based on Python 3.6.5, and PyCharm IDE.

The additional requirements in this chapter are that of deep learning-based
dependencies and OpenAI Gym’s environments. For implementing Deep Learning
models, we have used the Keras wrapper from the TensorFlow implementation (v
1.12.0) as shown in Fig. 12.1. From Gym, we are using the “CartPole-v0” envi-
ronment, but the readers are encouraged to try other environments as well, and this
is as simple as changing this name in the “environment” parameter.

The code is largely inspired from the A3C implementation provided in
TensorFlow’s official GitHub repository (link in references). The code has been
further enhanced with respect to the model architecture, and rewritten to make its
structure compatible with the flow of code used so far in this book and to enhance
the lucidity and intuitiveness of the code.

The code has an Actor-Critic Model class, which defines the common approx-
imator model for both the master and the workers in an A3C. The worker works on
a copy of the model and their own instance of the environment to compute the
gradient updates required, and then update the gradient of the master model with the
computed updates, followed by copying the master’s parameters.

The Model class is defined using the Sub-Classing feature of the tf.pyhton.keras.
Model class. This is an advanced feature, which makes the implementation of
complex models, the ones that require a shared network, shared inputs, or residual

© Springer Nature Singapore Pte Ltd. 2019
M. Sewak, Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-13-8285-7_12

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_12&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_12&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_12&amp;domain=pdf
https://doi.org/10.1007/978-981-13-8285-7_12


connections, simpler. We use a shared network architecture in which both the
policy and the value approximator functions share a major part of the implemented
DNN network and then diverge to have their own layers. The model also uses
TensorFlow’s “eager execution” feature which makes it easier to build and debug
the model in a functional programming manner, and also in case of our imple-
mentation where the model needs to be pre-built for instantiation. Another way to
achieve a similar feat (although will require some more code) is using the Keras’
Functional API. Readers are encouraged to go through the links in references for
both the Functional API and the Model Sub-Classing and experiment with different
implementations.

The code further, has a Master class and Worker class. The Master class is the
entry point to the A3C implementation. The Master instantiate a copy of the
Actor-Critic Model to retain its trainable weight such that the workers have a global
copy of the weights/network parameters to update and to sync with. The Master
class invokes as many workers as the number of CPU threads (in the case of
modern CPUs, each CPU core can have multiple threads) on the local machine.
Each of the workers instantiates a local copy of the Actor-Critic Model and the
environment.

In our implementation of the model, we have two hidden layers for the DNN
which are shared between the policy and the value networks. From the last shared
hidden layer, both the policy and value networks diverge into their dedicated layers.
Both the policy and the value network have a dedicated hidden layer of their own,
followed by their respective value layers. As covered in Chap. 11 about the
architecture of these models, the policy network ends in a SoftMax layer (or
alternatively a “Dense” logit layer over which SoftMax function is applied as in this
code) with as many neurons as the cardinality of the action space that provides the
class probabilities to enable a Stochastic policy (the actions are samples based on
their action probabilities as predicted by this layer). The Value network ends in a
single neuron layer, providing the value estimate.

The workers keep playing with their copy of the environment and keep updating
their local copy of the model, until they either complete an episode or reach the
maximum number of steps for a forced sync with the master. During the syn-
chronization process, the workers compute their model’s required gradient update,

Fig. 12.1 Requirements.txt

154 12 A3C in Code



and then updates the global model’s network parameters as they stand then with this
update. Following this update, the worker copies the updated state (model trainable
weights) from the global model to their local copy of the model and resumes
playing with their copy of the environment.

Worker class is implemented as an instance of the “threading.Thread” class. The
threaded implementation of the worker allows to directly share the memory space
across different workers making it very easy to share the global variables required
for interaction without going through slightly more complex ways of achieving a
similar effect in a multiprocessor environment. But the multi-threaded implemen-
tation may not be as efficient or scalable as a true multiprocessing implementation.
Python has a Global Interpreter Lock (GIL) because of which true multiprocessing
is not possible directly in Python and may require external library/software support
to do so. An easier way to achieve this is through multiprocessing task queues using
software packages that support distributed task queues. The multiprocessing library
within python may also provide a decent, though not so scalable option. Readers are
encouraged to experiment with different mechanisms of the worker class’ asyn-
chronous implementation and the related mechanism for sharing variable, and
coordination between the worker and the master.

Lastly, we also have a custom implementation of the Memory class. This time
we use a very simple list with memory instead of a Deque. The custom exception
class has no changes from what we covered in Chap. 9.

The final structure of the project with all these code and model files is as shown
in Fig. 12.2.

Fig. 12.2 Project structure for the DDQN project

12.1 Project Structure and Dependencies 155



12.2 Code (A3C_Master—File: a3c_master.py)

156 12 A3C in Code



12.2 Code (A3C_Master—File: a3c_master.py) 157



158 12 A3C in Code



12.2 Code (A3C_Master—File: a3c_master.py) 159



12.2.1 A3C_Worker (File: a3c_worker.py)

160 12 A3C in Code



12.2 Code (A3C_Master—File: a3c_master.py) 161



162 12 A3C in Code



12.2 Code (A3C_Master—File: a3c_master.py) 163



164 12 A3C in Code



12.2 Code (A3C_Master—File: a3c_master.py) 165



12.2.2 Actor-Critic (TensorFlow) Model
(File: actorcritic_model.py)

166 12 A3C in Code



12.2 Code (A3C_Master—File: a3c_master.py) 167



12.2.3 SimpleListBasedMemory
(File: experience_replay.py)

168 12 A3C in Code



12.2 Code (A3C_Master—File: a3c_master.py) 169



170 12 A3C in Code



12.2.4 Custom Exceptions (rl_exceptions.py)

12.3 Training Statistics Plots

See Figs. 12.3 and 12.4.

Fig. 12.3 Un-discounted reward in each global episode

12.2 Code (A3C_Master—File: a3c_master.py) 171



Fig. 12.4 Discounted reward and loss in each global episode

172 12 A3C in Code



Chapter 13
Deterministic Policy Gradient
and the DDPG

Deterministic-Policy-Gradient-Based
Approaches

Abstract In this chapter, we will cover the Deterministic Policy-Gradient algo-
rithm (DPG), with the underlying Deterministic Policy-Gradient Theorems that
empower the underlying mathematics. We would also cover the Deep Deterministic
Policy-Gradient (DDPG) algorithm, which is a combination of the DQN and the
DPG and brings the deep learning enhancement to the DPG algorithm. This chapter
leads us to a more practical and modern approach for empowering reinforcement
learning agents for continuous-action control.

13.1 Deterministic Policy Gradient (DPG)

In the earlier chapters on Policy-Based Approaches and Actor-Critic Models, the
algorithms that we have covered typically comes under the Stochastic
Policy-Gradient approaches for Reinforcement Learning. In fact, both the classes of
algorithms that we have studied so far in the Policy-Based approaches, namely the
REINFORCE and its variants and the Actor-Critic model and its variants, all comes
under the family of “On-Policy” “Stochastic Policy Gradient” methods for
Reinforcement Learning. These algorithms are on-policy, that is the behavior policy
is in-built in the action policy of the model, and this policy takes care of the
exploration requirements as well in the model. Also, these models have a stochastic
action policy. Unlike a deterministic action policy of any “Value Estimation”
algorithms like the one in typical Q-Learning algorithm, in which the action policy
only provides recommendation of a single (best) action for the current state as the
policy’s outputs, the “On-Policy” “Stochastic Policy Gradient” models could pro-
vide the action-probability function over all possible in a given state as their output.
The action in such stochastic on-policy algorithms could be taken directly on the
basis of the probabilistic sampling from the set of output probabilities for each
action. So, this has the exploration in-built, as even the less optimal actions have a
nonzero probability of being chosen based on the model’s standardized output

© Springer Nature Singapore Pte Ltd. 2019
M. Sewak, Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-13-8285-7_13

173

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_13&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_13&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_13&amp;domain=pdf
https://doi.org/10.1007/978-981-13-8285-7_13


probabilities for such actions. The estimation/target policy in the case of
Q-Learning was stochastic though, but the action policy was deterministic.

We also have algorithms in the Stochastic Policy-Gradient-based approaches
that adopt the “Off-Policy” mechanism, and comes under the family called the
“Off-Policy” “Policy Gradient” algorithms. In the earlier case where the action
policy is stochastic in itself, there are ample opportunities for exploration in-built
inside the action policy, but in the case of more complex problems, the in-built
exploration capabilities of these models may be overwhelmed and an external
behavior policy that ensures optimal exploration could help. Even from a training
data perspective, in the case of Off-Policy (Stochastic) Policy-Gradient-based
algorithms, we do not require the complete trajectory of a sequence of events for
training, and the training could use the past episodes randomly. Also, being from
the off-policy family of algorithms, these algorithms have a dedicated external
behavior policy and hence the exploration could be made better than that in their
On-Policy counterparts. Sometimes additional noise could be added in the
On-Policy Stochastic Gradient algorithms to ensure better exploration, even com-
parable to an off-policy mechanism and also to prevent the training updates getting
stuck in the local optimum due to lack of adequate exploration.

In the Stochastic Gradient-based approaches, mostly, we have been using the
gradient of our Performance Function (J) and by moving in the direction of this
gradient we could maximize the Performance Function (J). We also discussed the
issue of mathematical intractability in computing this stochastic gradient. This
intractability was alleviated by some simplification under limiting conditions as
proposed in the (Stochastic) Policy-Gradient Theorem. Until recently it was
believed that a Deterministic Gradient is not possible when using a model, and the
only approaches possible under the Policy-Gradient-based approaches had to be
Stochastic Gradient Policy-based approaches with the applicable limiting condi-
tions for any practically implementable solution. But recently some good work has
been published in the area of the Deterministic Policy-Gradient-based approaches
which are, in turn, is powered by the Deterministic Policy-Gradient Theorem. The
Deterministic Policy-Gradient Theorem, in turn, provides the required simplifica-
tions for the underlying mathematics to enable a practically implementable algo-
rithm with this approach.

The Deterministic Policy Gradient though has a different approach and mathe-
matical derivation, it can be proved that the Deterministic Policy Gradient itself is a
limiting case of the Stochastic Policy Gradient. This is also intuitive as a
Deterministic Policy is a limiting condition of a Stochastic policy under the con-
ditions that the resulting probability distribution function has nonzero probability
only one action in the permissible action space. In the case of the Policy Gradient,
the Deterministic Policy Gradient could be shown as a limiting condition of the
Stochastic Policy Gradient under the limiting condition that the variance of the
underlying policy becomes zero.

The Deterministic Policy-Gradient algorithms that we will be discussing in this
chapter are both based on the Actor-Critic class of models, and comes in both the
On-Policy and Off-Policy variants. Since the action policy is deterministic in nature

174 13 Deterministic Policy Gradient and the DDPG



in these algorithms, the on-policy variant of these model does not provide enough
exploration opportunities and hence external variations/noise have to be added in
the policy implementation to allow for greater exploration. Hence, there are not
many popular models or their variants in the On-Policy Deterministic Policy-
Gradient class of models, and most of the promising variants come from the
Off-Policy Deterministic Policy-Gradient-based approaches. This fact is also evi-
dent from the size of the boxes representing these algorithm classes in Fig. 13.1
earlier.

13.1.1 Advantages of Deterministic Policy Gradient Over
Stochastic Policy Gradient

The Deterministic Policy Gradient is a more recent advent than its Stochastic
Policy-Gradient counterpart and was published very recently. We have also dis-
cussed that both from the output perspective and the from a mathematical proof
perspective, the Deterministic Policy Gradient could be considered as an extreme
limiting case of Stochastic Policy Gradient. Instead of offering the complete
Action-Probability function for all permissible actions in a given state, the
Deterministic Policy-Gradient algorithm just suggests a single action. We also
discussed in the chapter on Policy-Gradient Approaches taking appropriate exam-
ples that such form of deterministic output might not be ideal in certain conditions
and not suitable for a certain application. Then, the question remains that why so
much of recent effort has gone into the Deterministic Policy-Gradient class of

Fig. 13.1 Hierarchy of policy-based approaches

13.1 Deterministic Policy Gradient (DPG) 175



algorithms and what advantages do they bring as compared to the Stochastic
Policy-Gradient class of algorithms. We will try to understand some of the reasons
for this below.

The first reason for this is simplicity. The deterministic policy gradient follows a
simple model-free form and happens to actually be the expected gradient of the
action-value (Q) function. Remember the gradient of the Performance function was
challenging to find. Also remember that we have derived the gradient of the
action-value function easily earlier in the case of value-estimation methods.

The second reason is efficiency. The gain in efficiency is because of two reasons.
One is that because of its simplicity itself, that is a by-product of the previous
reason. Being the expected gradient of the action-value function, the Deterministic
Policy Gradient could be estimated much more efficiently than the usual stochastic
policy gradient. Another reason for the efficiency is because of the fact that since
the algorithm output is deterministic hence the integration of the policy gradient is
not required over all the state–action pair combinations, but only over all the states.
This considerably reduces the computation complexity. This efficiency also con-
verts to performance and it could be demonstrated that because of these factors the
deterministic policy gradient significantly has a better performance as compared to
their stochastic counterparts especially in problems with high-dimensional action
spaces.

The third reason is that there are some unique cases in which the Stochastic
Policy Gradient is not possible, but Deterministic Policy Gradient is still applicable.
Some use cases, especially in the area of Robotics, provides a differentiable control
policy, but has no functionality to inject noise. As we have discussed earlier, the
Stochastic Policy Gradient, especially in the On-Policy settings which is also the
predominant class of algorithms under the Stochastic Policy Gradient, requires an
injection of noise for optimal exploration over complex problems. Under these
conditions, an Off-Policy Deterministic Policy Gradient may be the best algorithm
choice under Policy Gradient.

13.1.2 Deterministic Policy Gradient Theorem

The deterministic policy-gradient theorem provides a particular simplification for
finding the deterministic policy gradient under some mathematical conditions.
A deterministic policy could be expressed as (13.1a) below. Here, l is a policy
parametrized by h such that it maps the states in the state set S to the actions in the
action set A.

lh : S ! A ð13:1aÞ

The state transition probability and the discounted state distribution could be
denoted as (13.1b) and (13.1c) below.

176 13 Deterministic Policy Gradient and the DDPG



pðs ! s0; t; lÞ ð13:1bÞ

qlðsÞ ð13:1cÞ

Given these notations, the Performance Value (J) under the deterministic policy
l could be expressed as the expectancy of all discounted rewards under the policy
as expressed in Eq. (13.2) below.

JðlhÞ ¼ E½rc1jl� ð13:2Þ

The Performance Value could be expanded in terms of the notations (13.1a,
13.1b, 13.1c) above as Eq. (13.3a) below. This essentially means that the
Expectancy of cumulative discounted rewards as in Eq. (13.2) above is the
weighted product of the probability of reaching a particular state under a given
policy and the reward accumulated from that under the given policy parameterized
under the given parameter summed over all states possible. The Performance Value
as in Eq. (13.3a) could be further expressed in terms of the expectancy as
Eq. (13.3b) below.

JðlhÞ ¼
Z
s

qlðsÞrðs; lhðsÞÞds ð13:3aÞ

JðlhÞ ¼ Es�ql ½rðs; lhðsÞ� ð13:3bÞ

The deterministic policy-gradient Theorem 1 states that if the conditions as in
(Theorem 1 conditions) are satisfied and the deterministic policy gradient exists,
then the gradient of the Performance Value function could be expressed as
Eq. (13.4a) below. Equation (13.4a) is in integral form as Eq. (13.3a) and
Eq. (13.3b) is in expectation form as Eq. (13.3b).

DhlhðsÞ;DaQlðs; aÞ exists: Theorem 1Conditionð Þ

DhJðlhÞ ¼
Z
s

qlðsÞDhlhðsÞDaQlðs; a; hÞja¼lhðsÞds ð13:4aÞ

DhJðlhÞ ¼ E½DhlhðsÞDaQlðs; a; hÞja¼lhðsÞ ð13:4bÞ

The deterministic policy-gradient Theorem 2 states that under certain limiting
condition, when the variance of the stochastic policy gradient tends to zero then
under these limiting conditions the stochastic policy gradient is equivalent to the
deterministic policy gradient.

13.1 Deterministic Policy Gradient (DPG) 177



13.1.3 Off-Policy Deterministic Policy-Gradient-Based
Actor-Critic

In off-policy deterministic policy gradient, the behavior uses an external policy.
That is a policy p(s, a) is used to draw the trajectories to train a deterministic action
policy lh(s). Note that since l is a deterministic policy, so it just requires a state as
input to provide a single action recommendation, also l is parametrized over
parameter vector h. The true action-value function over the target policy lh(s) could
be given as Ql(s, a). But like as in the stochastic actor-critic case, since this true
action value is non-differentiable we will use an approximation function to
approximate this action value. The action value is parametrized over the policy
w instead, such that Qw(s, a) � Qw(s, a).

The rest of the computation is similar to that of Stochastic Deterministic Policy,
except for the fact that the gradient of the deterministic policy is the gradient of the
action-value function as shown in the series of equations below. We compute the
error between the target and actual values as in Eq. (13.5). This is atypical to how it
is computed in Q-Learning.

dt ¼ rt þ cQwðstþ 1; lhðst; atÞÞ � QwðstÞ ð13:5Þ

Then, we update the target policy parameter w with this error, by moving in the
direction of the gradient of the target function Qw at time step t, using the learning
rate aw as shown in Eq. (13.6) below.

wtþ 1 ¼ wt þ awdtDwQwðst; atÞ ð13:6Þ

Then, we update the deterministic action policy parameter h. This uses the chain
rule similar to that we used in the stochastic policy-gradient parameter’s update.
The partial differential of the deterministic action policy with respect to the policy
parameter is the product of the partial differential of the target function with respect
to the action and the action policy with respect to its parameter. The update in the
action policy parameter h is, thus, done by moving in the direction of this gradient
using a learning rate as ah as shown in Eq. (13.7) below.

htþ 1 ¼ ht þ ahDhlhðstÞDaQwðst; atÞja¼lhðsÞ ð13:7Þ

13.2 Deep Deterministic Policy Gradient (DDPG)

The Deterministic Policy Gradient (DPG) as covered in earlier section uses
Q-Learning for value estimation, which in turn use a linear model as a function
approximator. Though the experiments conducted in the original DQN paper use
only linear function approximators, it is possible to replace this linear function

178 13 Deterministic Policy Gradient and the DDPG



approximator with a deep learning model. This is where the Deep Deterministic
Policy Gradient (DDPG) comes into the picture.

The Deep Deterministic Policy Gradient is a model-free, off-policy, actor-critic,
model-free algorithm based on the deterministic policy-gradient theorem and could
operate over continuous-action spaces. Essentially, DDPG aims to combine the
actor-critic model implementation of DPG for continuous-action control and
implement DQN for policy estimation and policy update. The DDPG paper
(“Continuous Control with Deep Reinforcement Learning” paper as in references
section) claims that this algorithm consistently outperforms the DPG algorithm on
more than 20 tasks with continuous-action control requirements, and requires less
data samples for training on discreet action problems as compared to that required
by the Deep Q Networks (algorithm). All these 20 different tasks were performed
without retraining or reconfiguring the network. That is, the network configuration
and its weight was unchanged before making it switch from task to another. As the
readers could recall, which discussing the topic on “General Artificial Intelligence”
we discussed how the human brain at any instance remembers/knows multiple
skills, and does not has to forget one skill completely to learn another one. So, these
types of performances could be considered taking us closer to realizing the idea of
General AI for continuous-action domains, and for action domains with very large
action space.

Ideally, we could have simply replaced the linear function approximator as used
in DPG with a deep learning neural network. So, for example, we could have
directly replaced the linear approximator with a Multi-Layer Perceptron based Deep
Neural Network (MLP-DNN) in the case of a sensor domain input or a
Convolutional Neural Network (CNN) (followed by some Fully Connected
(FC) layers) for situations where we need to work on video feeds input and both of
these models ending in a SoftMax activated layer (for discreet action control) or a
Linearly activated layer (for continuous-action control). But as we would have
realized owing to the discussions as in the chapter on DQN, this is not going to
work out in the case of Reinforcement Learning training. We learnt some
enhancements to enable deep learning-based approximators in the chapter on DQN.
In the case of DDPG, some of these enhancements are used as-is and some modified
to better suit the implementation with actor-critic. DDPG also use some more recent
advancements in the field of deep learning besides the one we discussed in the
context of the DQN. These modifications are discussed in the next sub-section.

13.2.1 Deep Learning Implementation-Related
Modifications in DDPG

There are essentially three modifications that the Deep Deterministic Policy
Gradient (DDPG) adopts over the originally proposed linear approximator function

13.2 Deep Deterministic Policy Gradient (DDPG) 179



based Deterministic Policy Gradient (DPG) to have a DQN like deep
learning-based function approximators.

First, most of the Reinforcement Learning training methods working under the
model-free assumptions assume that the training samples are independent (that is
the samples are not correlated) and are identically distributed (that is the samples
have a fair representation of the different unique phenomena in the underlying
process). As we had discussed in the chapter on DQN, this assumption is severely
violated in the case when the inputs observations are drawn from the games’ (like
Atari2600 games) consecutive video frames. We discussed the approach to over-
come this by using “experience replays” from a “memory buffer” (a fixed size
memory cache). The incomings frames are stored in these “memory buffers” as
experience tuples, i.e., tuples of (st, at, rt, st+1, <done>). In this mechanism, the
states could be either a direct frame of image pixels or some relevant abstraction of
the video frames with other relevant data concatenated to represent an observation
state. Subsequently, training happens from the (experience) samples drawn from
this buffer randomly or as per a sampling policy (with some noise). We had also
discussed some advanced variants of this mechanism in the form of different types
of prioritized experience replays/buffers. The DDPG algorithm uses the basic
variant of this memory buffer as discussed in the earlier chapter.

Second, we learnt in the DQN chapter that if we have the same network (of
action-value function approximation) which is being updated continuously (Online
Network), also being used as a target network for computing the error (which itself
goes in the update of the online network), then this will make the network updates
very unstable. In the chapter on DQN, we learnt the two approaches to overcome
this problem. One approach is as followed by the Double DQN algorithm, that is of
having two different Q-Networks, one that works as (an offline) target network and
hence should be relatively stable, and the other that is being updated continuously
(online network). The target network copies the weight from the active online
network after some defined steps to avoid being completely out of sync leading to
irrelevance of target estimates. The other solution was an even advanced one of
having a shared deep learning architecture, thus having some common layers in the
neural network model, and then splitting the deep learning layer architecture after
the convolutional layers into dedicated dense layers for the two different models,
one computing the state value, and the other computing the advantage. The output
from these two splits is later combined to get the action-value Q-function
approximation. The first approach of using a relatively stable second target network
is what we draw inspiration from in the case of DDPG. But since we need to
implement it with Actor-Critic, which as we learnt in the earlier two chapters
requires more of an online setting for the value estimation, we would require to
adopt an approach to make an online implementation mechanism possible for this
relatively stable (offline) target network. To achieve this in DDPG, we use a
mechanism called “soft updates”. In using soft updates, we do have a target net-
work which is offline. Instead, the target network is also continuously updated and
they try to continuously albeit very slowly track the active (online) action-value

180 13 Deterministic Policy Gradient and the DDPG



network. The “soft updates” are done by updating the target network parameter
similar to that in the case of an exponential series as shown in the Eq. (13.8) below.

htþ 1 ¼ sht þð1� sÞhtþ 1 ð13:8Þ

In the above equation, s is constant in the range (0, 1), such that s � 1.
To understand the third enhancement, let us take a note of this achievement. As

we discussed earlier, the DDPG claimed to perform well on 20 different types of
continuous-action tasks without requiring any reconfiguration of the network or
retraining of the weights. The challenge to achieve a similar accomplishment has
been one of the endeavors for Deep Learning as well even out of Deep
Reinforcement Learning. To understand why it is difficult to achieve, let us take the
same example we used in an earlier chapter. In that example, the agent is trying to
learn different games, and each game had their own scoring criteria and scoring
scales, thus making it very difficult for the agent to compare the rewards from one
game to another and hence simultaneously learn the skills required in all these
games. To overcome this problem, the rewards across all these games were scaled
and clipped to ±1. But this only takes care of solving the problem at the reward’s
end, but there are many more problems that need to be catered in the case of deep
learning model and architecture. One such issue that arises in case of deep learning
models while dealing with inputs from multiple distributions is called “covariate
shifts”. Most of the modern Deep Learning activation functions are nonlinear, and
most of them are also not zero-symmetric mirror functions. This leads to the
changes in underlying distributions of the features between each layer in a deep
learning network, until the nonlinearities saturate, thus making it very difficult to
train a deep network. This phenomenon is called “(Internal) Covariate Shift”.
Traditionally, this has been dealt with by adopting a very low learning rate or one
that does not increase very rapidly (in case of adaptive learning rates-based opti-
mizers), and by carefully selecting the initialization function/values for each layer.
Needless to say, such approaches will not only considerably slow the training
speed, but also requires expert/SME care to set the initialization values. Around the
same year that DDPG was worked on an approach of “Batch Normalization” was
proposed. Batch Normalizing means normalizing (having unit mean and variance)
each dimension of input to any layer across all samples in a minibatch as a part of
the network architecture (that is having additional normalizing layers in the network
architecture in addition to the regular CNN and DNN layers). Besides Interval
Covariate Shifts, Batch normalization also (to some extent) solves the overfitting
problem and can complement or supplement the dropout mechanism in deep
learning for providing a similar regularization effect. The DDPG as a third
enhancement uses additional Batch Normalization in their deep learning architec-
ture to overcome the problem of internal covariate shifts.

13.2 Deep Deterministic Policy Gradient (DDPG) 181



Last, although not a major enhancement but a slight diversion from the regular
DPG implementation is the choice of noise function used in the behavior policy to
ensure optimal exploration. The behavior policy for an off-policy policy-
gradient-based mechanism is given as Eq. (13.9) below.

lbðstÞ ¼ laðstjhtÞþN ð13:9Þ

In the above Eq. (13.9), lb(st) is the action recommended by the behavior policy
for a state—s at time—t, which is an outcome of the action recommended by the
action policy la, which is parametrized by parameter vector h at time t, for the state
—s at time—t, and some noise, from a noise function N.

The added noise N is an important component of the behavior policy and helps
in providing exploration effect. If N tends to 0, then the behavior policy will mimic
the action policy with only exploitation and no exploration. The above expression is
common to most off-policy policy-gradient approaches, even the DPG. What
changes between the DPG and the DDPG is the choice for noise function. N should
be chosen as per the environment and the underlying training requirements. As we
have discussed this earlier, the more uncertain and complex the environment is and
the more demanding the approximation function models are, the more exploration
is required and hence greater should be the added noise as generated from the noise
function. We have also discussed that as training progress, we may require lesser
exploration to ensure fast convergence without losing out on initial exploration.
This could be done only if we have an adaptive exploration rate that encourages
higher exploration in the beginning and subsequently allows the exploration to
taper as a function of either the time (steps), or the error rate of the estimation
function or other suitable variables. The DDPG algorithm uses a noise function,
which provides varying level of noise as the training proceeds. The noise function
used thus generate temporally correlated exploration for exploration efficiency in
physical control problems with inertia.

13.2.2 DDPG Algorithm Pseudo-Code

The DDPG algorithms with its modifications and enhancements to implement deep
learning function approximators is given in Fig. 13.2.

182 13 Deterministic Policy Gradient and the DDPG



13.3 Summary

Many domains essentially mandate a continuous-action control for effective and
efficient implementation of an agent. Though a continuous-action control problem
may be broken down to discreet action control one by careful selection of the
number and position of breakpoints in action control range, but such an approach is
not only not suitable for all the domains, but may often lead to astronomically high
computational loads. With the proliferation of numerous sensors and/or images as
inputs using which an agent may have to take an action, especially a continuous
action, algorithms like DDPG and DPG algorithm and the underlying Deterministic
Policy-Gradient theorem provides an effective and modern approach to build and
train such agents.

The Deterministic Policy Gradient was earlier assumed to have not existed in a
model-free assumption. But recently not only it has been established, but inter-
estingly found to be simpler to compute and implement than its Stochastic
counterpart. Owing to the underlying simplicity, it is also efficient to compute as
compared to the respective Stochastic Policy Gradient wherever it exists, and many
a times is the only feasible option. The first Deterministic Gradient
Theorem provides the required mathematical simplification comparable to that of
the (Stochastic) Policy-Gradient Theorem applicable for Stochastic Policy Gradient
and the second theorem shows that the Deterministic Gradient is actually a limiting

Fig. 13.2 DDPG algorithm (Source DDPG paper)

13.3 Summary 183



case of the Stochastic Gradient under the limiting condition that the variance of the
underlying action policy tends to zero.

The Deep Deterministic Policy-Gradient (DDPG) algorithm provides the
essential modifications required to replace the linear function approximator as used
in the DPG with a deep learning-based approximator. Since directly replacing the
linear approximator with a deep learning model may make it unstable, so DDPG
takes clues from DQN and provides certain essential enhancements like using
experience replay, doing soft updates to the target network and incorporating batch
normalization in the network architecture. This led to the DDPG performing well in
over 20 different tasks requiring continuous-action control using the same network
configuration and weights across all these tasks.

184 13 Deterministic Policy Gradient and the DDPG



Chapter 14
DDPG in Code

Coding the DDPG Using High-Level Wrapper
Libraries

Abstract In this chapter, we will code the Deep Deterministic Policy Gradient
algorithm and apply it for continuous action control tasks as in the Gym’s Mountain
Car Continuous environment. We use the Keras-RL high-reinforcement learning
wrapper library for a simplified and succinct implementation.

14.1 High-Level Wrapper Libraries for Reinforcement
Learning

Until now in this book, we have been coding most of the algorithms in a low-level
coding platform. First, we started with pure Python and NumPy-based implemen-
tations, then we used the TensorFlow, and its wrapper library Keras. None of these
is a dedicated special-purpose Reinforcement Learning library, but instead, a
general-purpose platform for either any program, and mathematical computation, or
any deep learning operation. In this chapter, we will do things in a slightly different
manner. We will use a high-level special-purpose Reinforcement Learning wrapper
over these lower lever libraries and wrappers. We use Keras-RL (link as in Chap. 7’s
references) library, that we have introduced in Chap. 7 earlier on implementation
resources. Readers are encouraged to explore further high-level reinforcement learning
wrapper libraries and experiment coding in them as well. Some such libraries we have
covered in an earlier chapter on Implementation Resources.

We are using a special-purpose reinforcement learning high-level wrapper library
instead of coding directly in low-level platforms like TensorFlow in this chapter for
multiple reasons. First, is that we have so far only introduced the implementation
resources in Chap. 7, but have not used the same for coding purpose. Second, in
real-life scenarios, often the key challenge would be to convert your actual appli-
cation domain into a reinforcement learning scenario, and to aid that process you will
require a quick prototyping mechanism for testing different agents, and hence we
wanted to give our readers a taste of that. Third, is that we have utilized a low-level

© Springer Nature Singapore Pte Ltd. 2019
M. Sewak, Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-13-8285-7_14

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_14&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_14&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8285-7_14&amp;domain=pdf
https://doi.org/10.1007/978-981-13-8285-7_14


programming approach until now as it helps to intuitively understand the concepts
and also relate to the theory, mathematics and the research developments that we
covered in the last chapter. But since DDPG is very similar to Actor-Critic from a
coding difficulty perspective, we did not want to repeat a low-level implementation
and instead wanted to take this opportunity for demonstrating some more practical
approaches. Fourth, it makes the code really succinct (as is evident by the length of
this code as compared to that of the A3C in Chap. 12), allowing us to focus on
application instead.

14.2 The Mountain Car Continuous (Gym) Environment

In the chapter, we implement the Deep Deterministic Policy Gradient algorithm for
the continuous action control tasks. Since this is the first time that in this book are
using continuous action control so we can no longer use our custom “Grid World”
or Gym’s “Cart Pole” environment as both of these presents a discreet action
control scenario. We, therefore, use the Gym’s “Mountain Car Continuous” envi-
ronment where the challenge is to drive a car up a steep hill to make it touch a flag.

To make the challenge interesting, the car does not have an engine powerful
enough to drive up that steep hill starting from a stationary position. Therefore, we
have to take it uphill in a reverse direction to give it enough momentum to drive up
the hill ahead of it while coming downhill. The contiguous action control required
is that for the throttle to the car. A negative value takes the car and a positive value
takes it in front. The absolute throttle amount indicates the engine power. The
reward for reaching the goal is +100, and the penalty is the squared sum of actions
from start to goal.

14.3 Project Structure and Dependencies

We use the same “DRL” Python 3.6.5 environment as we have been using earlier in
this book. Besides the general dependencies like the Gym, NumPy, and Keras, we
would require the “keras-rl” (Fig. 14.1) library which could be installed from “pip”
package manager (“pip install keras-rl”). Keras-RL is itself dependent on Keras.

Since this is a very simplistic, and a highly abstracted implementation, most of
the details are hidden under the “keras-rl” library itself, and we have a rather very
succinct code that we have implemented in a single file named ddpg_contiu-
ous_action.py. The file contains the DDPG which have methods to make very
modular deep learning models for the actor and critic using the Keras deep learning
wrapper for TensorFlow. The actor ends in a linearly activate layer having as many

186 14 DDPG in Code



neurons as the number of actions, and the critic has just a single linearly activated
neuron to output the baseline value. The number of hidden layers in both the actor
and critic, and the number of neurons in each of these hidden layers could be
customized the agent tested with different such configurations. Rest of all codes is
very simple and directly calls the wrapper’s underlying implementation of DDPG.
The project structure is as shown in Fig. 14.2.

The train function when called, see if the actor, critic, and the agent model exist,
else it creates a fresh instance of each. If they exist, then the method tries to locate
any existing model weights to resume training from there, else starts fresh training.
During training and testing, by keeping the visualize flag as True, a popup with the
agent actually playing the environment live as shown in Fig. 14.3, next appears.

Fig. 14.2 Project structure for the DDPG project

Fig. 14.1 Project dependencies

14.3 Project Structure and Dependencies 187



14.4 Code (File: ddpg_continout_action.py)

188 14 DDPG in Code



14.4 Code (File: ddpg_continout_action.py) 189



190 14 DDPG in Code



14.5 Agent Playing the “MountainCarContinous-v0”
Environment

See Fig. 14.3.

Fig. 14.3 DDPG playing the continuous mountain cart environment

14.5 Agent Playing the “MountainCarContinous-v0” Environment 191



Bibliography

1. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning. MIT Press (1998)
2. Bellman, R.: A Markovian decision process. Indiana Univ. Math. J. 6(4), 679–684 (1957)
3. Markov Decision Process, wikipedia.org. https://en.wikipedia.org/wiki/Markov_decision_

process. Accessed Aug 2018
4. Markov Chain, wikipedia.org. https://en.wikipedia.org/wiki/Markov_chain. Accessed Aug

2018
5. Markov Property, wikipedia.org. https://en.wikipedia.org/wiki/Markov_property. Accessed

Aug 2018
6. Solving MDPs with dynamic programming, towardsdatascience.com. https://towardsdata-

science.com/reinforcement-learning-demystified-solving-mdps-with-dynamic-programming-
b52c8093c919. Accessed Aug 2018

7. Dynamic Programming in Python for reinforcement learning, medium.com. https://medium.
com/harder-choices/dynamic-programming-in-python-reinforcement-learning-
bb288d95288f. Accessed Aug 2018

8. Understanding RL—The Bellman Equation, joshgreaves.com. https://joshgreaves.com/
reinforcement-learning/understanding-rl-the-bellman-equations/. Accessed Aug 2018

9. Reinforcement Learning in Finance, Coursera. https://coursera.org/lecture/reinforcement-
learning-in-finance. Accessed Aug 2018

10. Deep Reinforcement Learning Demystified, medium.com. https://medium.com/@m.
alzantot/deep-reinforcement-learning-demysitifed-episode-2-policy-iteration-value-iteration-
and-q-978f9e89ddaa. Accessed Aug 2018

11. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba,
W.: OpenAI Gym (2016). https://arxiv.org/abs/1606.01540

12. Docs—Open AI Gym. https://gym.openai.com/docs/. Accessed Aug 2018
13. Keras-RL, GitHub Repository Keras-RL. https://github.com/keras-rl. Accessed Aug 2018
14. Shani, G.: A Survey of Model-Based and Model-Free Methods for Resolving Perceptual

Aliasing. Ben-Gurion University (2004)
15. Temporal Difference Learning, Wikipedia. https://en.wikipedia.org/wiki/Temporal_

difference_learning. Accessed Aug 2018
16. Sutton, R.: Learning to predict by the methods of temporal differences. Mach. Learn. 3(1), 9–

44 (1988)
17. Eligibility Traces, incompleteideas.net. http://www.incompleteideas.net/book/ebook/node72.

html. Accessed Aug 2018
18. SARSA, Wikipedia. https://en.wikipedia.org/wiki/State%E2%80%93action%E2%80%

93reward%E2%80%93state%E2%80%93action. Accessed Aug 2018

© Springer Nature Singapore Pte Ltd. 2019
M. Sewak, Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-13-8285-7

193

https://en.wikipedia.org/wiki/Markov_decision_process
https://en.wikipedia.org/wiki/Markov_decision_process
https://en.wikipedia.org/wiki/Markov_chain
https://en.wikipedia.org/wiki/Markov_property
https://towardsdatascience.com/reinforcement-learning-demystified-solving-mdps-with-dynamic-programming-b52c8093c919
https://towardsdatascience.com/reinforcement-learning-demystified-solving-mdps-with-dynamic-programming-b52c8093c919
https://towardsdatascience.com/reinforcement-learning-demystified-solving-mdps-with-dynamic-programming-b52c8093c919
https://medium.com/harder-choices/dynamic-programming-in-python-reinforcement-learning-bb288d95288f
https://medium.com/harder-choices/dynamic-programming-in-python-reinforcement-learning-bb288d95288f
https://medium.com/harder-choices/dynamic-programming-in-python-reinforcement-learning-bb288d95288f
https://joshgreaves.com/reinforcement-learning/understanding-rl-the-bellman-equations/
https://joshgreaves.com/reinforcement-learning/understanding-rl-the-bellman-equations/
https://coursera.org/lecture/reinforcement-learning-in-finance
https://coursera.org/lecture/reinforcement-learning-in-finance
https://arxiv.org/abs/1606.01540
https://gym.openai.com/docs/
https://github.com/keras-rl
https://en.wikipedia.org/wiki/Temporal_difference_learning
https://en.wikipedia.org/wiki/Temporal_difference_learning
http://www.incompleteideas.net/book/ebook/node72.html
http://www.incompleteideas.net/book/ebook/node72.html
https://en.wikipedia.org/wiki/State%E2%80%93action%E2%80%93reward%E2%80%93state%E2%80%93action
https://en.wikipedia.org/wiki/State%E2%80%93action%E2%80%93reward%E2%80%93state%E2%80%93action
https://doi.org/10.1007/978-981-13-8285-7


19. Diving deep into reinforcement learning, freecodecamp.org. https://medium.freecodecamp.
org/diving-deeper-into-reinforcement-learning-with-q-learning-c18d0db58efe. Accessed
Aug 2018

20. Tokic, M.: Adaptive epsilon-greedy exploration in reinforcement learning based on value
differences. In: KI 2010: Advances in Artificial Intelligence, pp. 203–210. Springer, Berlin
(2010)

21. Imaddabbura, Bandit Algorithms, github.io. https://imaddabbura.github.io/blog/data%
20science/2018/03/31/epsilon-Greedy-Algorithm.html. Accessed Aug 2018

22. Sewak, M., Rezaul Karim, Md., Pujari, P.: Practical Convolutional Neural Networks:
Implement Advanced Deep Learning Models Using Python. Packt Publishing (2018). ISBN:
1788392302, 9781788392303.

23. Sewak, M., Sahay, S.K., Rathore, H.: An overview of deep learning architecture of deep
neural networks and autoencoders. In: International Conference on Intelligent Computing,
25–27 Oct 2018. Amrita University, Proceedings in Journal of Computational and
Theoretical Nanoscience (2018)

24. Sewak, M., Sahay, S.K., Rathore, H.: Comparison of deep learning and the classical machine
learning algorithm for the malware detection. In: 19th IEEE/ACIS International Conference
on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing, SNPD (2018)

25. Sewak, M., Sahay, S.K., Rathore, H.: An investigation of a deep learning-based malware
detection system. In: Proceedings of the 13th International Conference on Availability,
Reliability and Security, ARES 2018, pp. 26:1–26:5 (2018)

26. “OpenAI Universe”, GitHub Repository. https://github.com/openai/universe
27. “OpenAI Retro”, GitHub Repository. https://github.com/openai/retro
28. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba,

W.: Openai gym (2016)
29. “DeepMind Lab”. https://deepmind.com/blog/open-sourcing-deepmind-lab/
30. “DeepMind Control Suite”, GitHub Repository. https://github.com/deepmind/dm_control
31. Johnson, M., Hofmann, K., Hutton, T., Bignell, D.: The Malmo platform for artificial

intelligence experimentation. In: Kambhampati, S. (ed.) Proceedings 25th International Joint
Conference on Artificial Intelligence, pp. 42–46. AAAI Press, Palo Alto, California USA
(2016). https://github.com/Microsoft/malmo

32. Duan, Y., Chen, X., Houthooft, R., Schulman, J., Abbeel, P.: Benchmarking deep
reinforcement learning for continuous control. In: Proceedings of the 33rd International
Conference on Machine Learning (ICML) (2016)

33. “DeepMind’s TRFL”, GitHub Repository. https://github.com/deepmind/trfl
34. “OpenAI Baselines”, GitHub Repository. https://github.com/openai/baselines
35. Plappert, M.: “Keras-RL”, GitHub Repository (2016). https://keras-rl.https://github.com/

keras-rl/keras-rl
36. Caspi, I., Leibovich, G., Novik, G., Endrawis, S.: Reinforcement learning coach (2017).

https://doi.org/10.5281/zenodo.1134899
37. Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R., Goldberg, K., Gonzalez, J.E., Jordan,

M.I., Stoica, I.: RLlib: abstractions for distributed reinforcement learning. In: International
Conference on Machine Learning (ICML) (2018)

38. DQN, deepmind.com. https://deepmind.com/research/dqn/. Accessed Aug 2018
39. AlphaGo, deepmind.com. https://deepmind.com/research/alphago/. Accessed Aug 2018
40. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller,

M.A.: Playing Atari with Deep Reinforcement Learning (2013). https://arxiv.org/abs/1312.
5602

41. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A.,
Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D.: Human-level
control through deep reinforcement learning. Nature 518 (2015). 10.1038/nature14236

194 Bibliography

https://medium.freecodecamp.org/diving-deeper-into-reinforcement-learning-with-q-learning-c18d0db58efe
https://medium.freecodecamp.org/diving-deeper-into-reinforcement-learning-with-q-learning-c18d0db58efe
https://imaddabbura.github.io/blog/data%20science/2018/03/31/epsilon-Greedy-Algorithm.html
https://imaddabbura.github.io/blog/data%20science/2018/03/31/epsilon-Greedy-Algorithm.html
https://github.com/openai/universe
https://github.com/openai/retro
https://deepmind.com/blog/open-sourcing-deepmind-lab/
https://github.com/deepmind/dm_control
https://github.com/Microsoft/malmo
https://github.com/deepmind/trfl
https://github.com/openai/baselines
https://keras-rl.https://github.com/keras-rl/keras-rl
https://keras-rl.https://github.com/keras-rl/keras-rl
https://doi.org/10.5281/zenodo.1134899
https://deepmind.com/research/dqn/
https://deepmind.com/research/alphago/
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
http://dx.doi.org/10.1038/nature14236


42. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized Experience Replay (2015). https://
arxiv.org/abs/1511.05952

43. Lin, L.-J.: Reinforcement learning for robots using neural networks. Carnegie Mellon
University, Ph.D. Thesis Lin:1992: RLR:168871 (1992)

44. Seno, T.: Welcome to deep reinforcement learning, towardsdatascience.com. https://
towardsdatascience.com/welcome-to-deep-reinforcement-learning-part-1-dqn-c3cab4d41b6b
. Accessed Aug 2018

45. Juliani, A.: Simple reinforcement learning with tensorflow, medium.com. https://medium.-
com/@awjuliani/simple-reinforcement-learning-with-tensorflow-part-4-deep-q-networks-
and-beyond-8438a3e2b8df. Accessed Aug 2018

46. van Hasselt, H., Guez, A., Silver, D.: Deep Reinforcement Learning with Double Q-Learning
(2015). https://arxiv.org/abs/1509.06461

47. Wang, Z., de Freitas, N., Lanctot, M.: Dueling Network Architectures for Deep
Reinforcement Learning (2015). https://arxiv.org/abs/1511.06581

48. Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for
reinforcement learning with function approximation. In: Proceedings of the 12th
International Conference on Neural Information Processing Systems, NIPS’99, pp. 1057–
1063 (1999)

49. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.: Deterministic
policy gradient algorithms. In: Proceedings of the 31st International Conference on Machine
Learning, pp. 387–395 (2014)

50. Silver, D.: Lecture 7—Policy Gradient, University College London. http://www0.cs.ucl.ac.
uk/staff/d.silver/web/Teaching_files/pg.pdf. Accessed Aug 2018

51. Li, F.-F., Johnson, J., Yeung, S.: Lecture 14, CS231—Stanford. http://cs231n.stanford.edu/
slides/2017/cs231n_2017_lecture14.pdf. Accessed Aug 2018

52. Williams, R.J.: A class of gradient-estimating algorithms for reinforcement learning in neural
networks. In: Proceedings of the IEEE First International Conference on Neural Networks,
San Diego, CA (1987)

53. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Mach. Learn. 8(3), 229–256 (1992)

54. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T.P., Harley, T., Silver, D.,
Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning (2016). https://
arxiv.org/abs/1602.01783

55. Degris, T., Pilarski, P.M., Sutton, R.S.: Model-free reinforcement learning with continuous
action in practice. In: 2012 American Control Conference (ACC), pp. 2177–2182 (2012)

56. Bhatnagar, S., Sutton, R.S., Ghavamzadeh, M., Lee, M.: Natural actor-critic algorithms.
Automatica 45(11), 2471–2482 (2009)

57. Sutton, R.S., Barto, A.G.: Reinforcement learning—an introduction. In: Adaptive
Computation and Machine Learning. MIT Press (1998)

58. Wu, Y., Mansimov, E., Liao, S., Radford,.A., Schulman, J.: Openai baselines: Acktr a2c
(2017). https://blog.openai.com/baselines-acktr-a2c

59. Konda, V.R., Tsitsiklis, J.N.: On actor-critic algorithms. SIAMJ. Control Optim. 42(4),
1143–1166 (2003)

60. Abadi, M., et al.: Model Sub-classing, TensorFlow Guide: High Level API—Keras (2019).
https://www.tensorflow.org/guide/keras#model_subclassing

61. Abadi, M., et al.: Functional API, TensorFlow Guide: High Level API—Keras (2019).
https://www.tensorflow.org/guide/keras#model_subclassing

62. Abadi, M., et al.: Gradient Tapes, TensorFlow Tutorial: Automatic Differentiation and
Gradient Tapes (2019). https://www.tensorflow.org/tutorials/eager/automatic_differentiation

63. Abadi, M., et al.: apply_gradient(), TensorFlow API Docs: tf.train.Optimizer Class (2019).
https://www.tensorflow.org/api_docs/python/tf/train/Optimizer

Bibliography 195

https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1511.05952
https://towardsdatascience.com/welcome-to-deep-reinforcement-learning-part-1-dqn-c3cab4d41b6b
https://towardsdatascience.com/welcome-to-deep-reinforcement-learning-part-1-dqn-c3cab4d41b6b
https://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1511.06581
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/pg.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/pg.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture14.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture14.pdf
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1602.01783
https://blog.openai.com/baselines-acktr-a2c
https://www.tensorflow.org/guide/keras#model_subclassing
https://www.tensorflow.org/guide/keras#model_subclassing
https://www.tensorflow.org/tutorials/eager/automatic_differentiation
https://www.tensorflow.org/api_docs/python/tf/train/Optimizer


64. Yuan, R.: Deep reinforcement learning: playing CartPole through asynchronous advantage
actor critic (A3C) with tf.keras and eager execution, Medium.com (2018). https://medium.
com/tensorflow/deep-reinforcement-learning-playing-cartpole-through-asynchronous-
advantage-actor-critic-a3c-7eab2eea5296

65. Daoust, M.: A3C Blog Post, GitHub repository: TensorFlow/Models/Research (2018).
https://github.com/tensorflow/models/tree/master/research/a3c_blogpost

66. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.: Deterministic
policy gradient algorithms. In: Proceedings of the 31st International Conference on Machine
Learning, Proceedings of Machine Learning Research, vol. 32, pp. 387–395, Beijing, China,
22–24 Jun 2014

67. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.:
Continuous control with deep reinforcement learning (2015). https://arxiv.org/abs/1509.
02971

68. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing
internal covariate shift (2015). https://arxiv.org/abs/1502.03167

69. Weng, L.: Policy Gradient Algorithms (2018). https://lilianweng.github.io/lil-log/2018/04/
08/policy-gradient-algorithms.html#off-policy-policy-gradient. Accessed Jan 2019

196 Bibliography

https://medium.com/tensorflow/deep-reinforcement-learning-playing-cartpole-through-asynchronous-advantage-actor-critic-a3c-7eab2eea5296
https://medium.com/tensorflow/deep-reinforcement-learning-playing-cartpole-through-asynchronous-advantage-actor-critic-a3c-7eab2eea5296
https://medium.com/tensorflow/deep-reinforcement-learning-playing-cartpole-through-asynchronous-advantage-actor-critic-a3c-7eab2eea5296
https://github.com/tensorflow/models/tree/master/research/a3c_blogpost
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1502.03167
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html#off-policy-policy-gradient
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html#off-policy-policy-gradient


Index

A
Accumulating the rewards

value, reward, discounting factor, 21
Act Humanly. See Intelligent-behavior
Action adaptive epsilon algorithms

epsilon, 62
Action–value

Bellman equation, 21
Q-function, 16, 18

Activation
deep learning, 76, 80

Actor-critic methods
actor-critic, 141

Actor-critic model class
actor-critic, code, 153

Actor-critic models
DPG, 173

Adaptive Moment Estimation (ADAM)
optimizers, 83

Additional Target Q-Network
Double DQN. See Deep Q Network

Advantage
actor-critic, 148
REINFORCE algorithm, 138

Advantage network
Dueling DQN, 106

Agent, 14
a

learning rate, 57
AlphaGo

DeepMind, game, DQN. See Google
DeepMind

Anaconda
platform requirements, 65

Annealing epsilon (e)

epsilon. See Time Adaptive “epsilon”
Architecture

actor-critic, 144
Argmax, 26
Artificial Intelligence, 1
Artificial Intelligence agents

Artificial Intelligence systems, 1
Artificial Intelligence systems

Artificial Intelligence, 1
Artificial Neural Network (ANN)

artificial neurons, deep learning, 77
Artificial neurons

deep learning, 75
Asynchronous Advantage Actor-Critic

Implementation (A3C)
actor-critic, 149

Asynchronous mode
value iteration, 26

Atari
Gym, 97

Atari2600, 152
Atari2600 games, 91
Attribution of rewards

reward, 4

B
Backgammon

game, environment, 96
Backpropagation

deep learning, training, 78
Backward view

TD (k), 57
Balance a pole on a cart

game. See CartPole
Bandit Algorithm

© Springer Nature Singapore Pte Ltd. 2019
M. Sewak, Deep Reinforcement Learning,
https://doi.org/10.1007/978-981-13-8285-7

197

https://doi.org/10.1007/978-981-13-8285-7


Bandit Algorithm (cont.)
epsilon, 62
Q-Learning, epsilon, 59, 60

Baseline
OpenAI, 93
REINFORCE algorithm, 138

Baseline agents
OpenAI, 90

Batch normalization
Deep Deterministic Policy Gradient, 181

Behavior policy
epsilon, 65

Behavior policy class
Double DQN, Code, 119

Bellman equation, 19, 21–25, 27
Bellman equation for value-function

Bellman equation, value function, 55
Box2D

OpenAI Gym, 91
Building a custom environment class

environment, 31
BURLAP, 93

reinforcement learning wrapper libraries, 93

C
CartPole

environment, 96
game, environment, 10

CartPole balancing problem
CartPole, 11

CartPole-v0
environment, 153

CartPole-v1
environment, 109

Chain rule of derivatives
optimization, 78

Challenges
classical DP, 51

Classical Dynamic Programming (Classical
DP)

dynamic programming, 51, 52
classical DP, 51–54

Classical Reinforcement Learning (Classical
RL)

classical RL, 52, 53
reinforcement learning, RL. See Classical

DP
Classic Control

OpenAI Gym, 91
Clipping rewards and penalties

Deep Q Network, 103
Coach

Nervana Systems, 94
reinforcement learning wrapper libraries, 94

Code
Q-Learning, 65

Color-channels
Convolutional Neural Network, 84

Combining the solutions to these two
subproblems

dynamic programming, 24
Conceptual design

actor-critic, 143
Conditional probability distribution, 19
Constructing the environment

grid-world, 31
Continuous-action agent

agent, 11
Continuous action space, 130
Continuous-tasks, 54
Control problems of reinforcement learning, 54
Convergence-assurance, 130
Convolutional layer

Convolutional Neural Network, 85
Convolutional-map

Convolutional Neural Network, 86
Convolutional Neural Networks (CNN)

Convolutional Neural Network, 75, 84–88
deep learning, 84

Counter-Strike
video game, 96

Covariate shifts
batch normalization. See ELU

CPU threads, 154
Crossentropy loss

loss functions, SoftMax, 82
Custom environment class

environment. See Gym
Custom exceptions classes

code, 125

D
Decreasing epsilon

epsilon, 61
Deep Deterministic Policy Gradient

deterministic policy gradient, 178
Deep learning for vision

Convolutional Neural Network, 84
DeepMind Control Suite

DeepMind, 92
reinforcement learning wrapper libraries, 92

DeepMind Lab
DeepMind, 92

Deep Neural Networks (DNN)
deep learning, 77

Deep Q Networks, 97
Deep Reinforcement Agents. See Artificial

Intelligence agent

198 Index



Deployment. See Production
Deque

experience replay, 155
Deterministic policy gradient

policy gradient, 173
Different types of Reward

reward, 6
Discounted rewards

reward, 21–23
Done (boolean)

custom environment class, 34
Double DQN. See DDQN

code, 111
DQN algorithm

Deep Q Network, 98
Dueling DQN, 105
Dynamic programming. See Bellman Equation;

Value Iteration, Policy Iteration

E
Eager execution

TensorFlow, 154
Eligibility Traces

TD (k), 56, 57
Exponential Linear Unit (ELU)

activation, 82
Environment, 1, 2, 7, 8, 10, 14, 17
Envs

environment. See Custom Environment
Class

Epsilon (Ɛ)
epsilon. See Exploration
policy, 17

Epsilon (e)-greedy
epsilon. See Epsilon-greedy

Epsilon first
epsilon, 61

Epsilon-greedy algorithm
epsilon, behavior policy, 65

Epsilon soft
action adaptive epsilon algorithms, 62

Equal attribution. See Attribution of rewards
Essential recipes

environment. See Gym
Estimating the action–value

Bellman equation, 23
Estimating the value function

Bellman equation, value, 22
Estimation sub-problem, 54
Example of state formulation

state, 13
Experience replay memory class

Double DQN, Code, 123

Experience replays
Deep Deterministic Policy Gradient, 180
Deep Q Network, 100

Experience trail
Deep Q Network, experience replay, 100

Experience-tuples
experiance replay, 100

Exploit
policy, 16, 17

Exploration
policy, 16, 17

Explore
policy, 16, 17

F
Feasibility of application of dynamic

programming
dynamic programming, 24

FC networks. See Fully Connected Layers
Feed-Forward

deep learning, 77
Feed-Forward Deep Neural Network

deep learning, 79
Feed-Forward mechanism

deep learning, 79
Flattened layer

Convolutional Neural Network, 86
Formulation of

state, 8, 9, 14
Fortnite

video game, 96
Forward view

TD (k), 57
Fully connected layer

Convolutional Neural Network, 85, 86
Functional API

TensorFlow, 154
Function-approximators

model, 52
Future rewards

reward, 3

G
Gamma

discounting factor, 21, 22, 25
Garage, 92

reinforcement learning wrapper libraries, 92
General Artificial Intelligence

Artificial Intelligence, 95
Geoffrey Hinton

deep learning, 79
GitHub, 153
Global Interpreter Lock (GIL)

Index 199



Python. See Global Interpreter Lock
Graphical games

game. See CNN
Grid-World

environment, 29, 30, 36, 41, 44
Gym

environment, 29, 31, 32
OpenAI, 91

H
Half-Life

video game, 96
High variance

REINFORCE algorithm, 135

I
Identity

activation, 81
Info (dict)

custom environment class, 34
Intelligent-behavior, 1
Image frames

vision, 13
Inheriting an environment class

environment, 31
Intractability, 174
Introduction to deep learning

deep learning, DL. See DRL

J
Java

programming language, 93

K
Keras

platform dependencies, 109
Keras-RL, 93

platform dependencies, 185
reinforcement learning wrapper libraries, 93

Kernel filters
Convolutional Neural Network, 85

L
Large action space, 130
Linear

activation, 81
L1 loss

loss functions, 82
L2 loss

loss functions, 82
Logit layer

actor network, 154
Loss functions

deep learning, 82

M
Malmo, 92
Mario

game, 11, 12
Markov Chain

MDP, 20, 21
Markov Decision Process (MDP), 19–22, 25,

27
MDP, 19, 20, 25, 27

Markov Property
MDP, 19, 20, 22

Mathematical objective, 21
MATLAB

programming language, 93
MDP model

MDP, model, 52
Mean shift

ReLU, 82
Mean Square Error

loss functions, 82
Memory buffer

Deep Deterministic Policy Gradient, 180
Memory class

code, 155
Miniconda

platform requirements, 65
MLP-DNN

deep learning, 75, 77, 84, 86, 88
Model

MDP, 51
Model-based approach

MDP, 52, 53
Model-free approaches

MDP, 52
Monte Carlo Policy Gradient

REINFORCE algorithm, 134
stochastic policy gradient, 134

Monte Carlo simulation
MDP, 53, 56

Mountain Car Continuous
environment, 186

MountainCarContinous-v0
environment, 191

MSE
loss functions, 82

MuJoCo
OpenAI Gym, 91

Multilayer Perceptron (MLP)
deep learning, DNN, artificial neurons. See

MLP-DNN

N
Negative reward

reward. See Penalty

200 Index



Nervana Systems, 94
Neural-networks

function-approximators, ANN, DNN, CNN,
MLP, 51

Non-episodic tasks, 54
NumPy

platform dependencies, 185

O
Observation. See State
Observation (object)

custom environment class, 33
Observation, reward, done, info

step () method. See Custom Environment
Class

Off-policy
policy, agent, 16

On-policy, 1, 16, 17, 173
OpenAI. See Gym
OpenAI baselines

reinforcement learning wrapper libraries, 93
OpenAI Gym

OpenAI, 91
OpenAI Universe

OpenAI, 91
Optimal Substructure

dynamic programming, 24, 25
Optimistic-initial-condition

State-Action-Reward-State-Action
(SARSA), 58

Optimizers
deep learning, 83

Overlapping Subproblems
dynamic programming, 24

P
Pa(s, s′)

state transition probability, 20, 22
Parametrized Leaky ReLU

activation, 81
Penalty

reward. See Negative reward
Perfectly “model” the environment

MDP, 52
Performance Function (J), 174
Permissible state transitions

grid-world. See State Transition Probability
Performanceof policy

performance function, 132
p

policy, 16, 20, 21
Pip

platform requirements, 65

Pointwise multiplication of the two functions
Convolutional Neural Network, 85

Policy, 1, 16, 17
Policy approximation, 127

policy approximation, 128
Policy-based approaches, 173
Policy Evaluation

dynamic programming, 27
Policy gradient-based approaches

policy approximation, 128
Policy-Iteration, 52

dynamic programming, 19, 25, 27
grid-world, 36

Pooling layer
Convolutional Neural Network, 85, 86

Pooling technique
pooling layer, 86

Pre-requisites
dynamic programming, 25

Prioritized experience replay
Deep Q Network, experience replay, 101

Probability of reaching different states
state transition probability, 23

Probable next state
state, 19

Problems with calculating the policy gradient
stochastic policy gradient, 132

Production. See Deployment
Profitable state

value, state, reward, 15
Pseudo-code

Deep Deterministic Policy Gradient, 182
REINFORCE algorithm, 137

PUBG
video game, 96

PyCharm IDE
platform dependencies, 109

Python 3.6.5 runtime
platform requirements, 65

Python 3.x
platform requirements, 34

Q
Q-function. See Action–Value Function

Bellman equation, 21
Q-Learning, 58
Q. See Action–Value
SARSA, 57

Q-Learning, 51, 58, 59, 62, 63, 65
model-free approach, 53

Q Table
Q-Learning, 65

Index 201



R
Ra(s, s′)

reward function. See Reward
Random action

explore, 60
Rational

act ‘Humanly’. See Intelligent-behavior
Randomized Leaky ReLU

activation, 81
Readings from all the sensors

state, 8
Rectifier linear unit

activation, 81
REINFORCE

stochastic policy gradient, 133
REINFORCE algorithm

stochastic policy gradient, 133
Reinforcement Learning. See Artificial

Intelligence
Reinforcement learning agent

reinforcement learning, agent, 8, 11, 12
Artificial Intelligence agents, 1

REINFORCE with baseline, 138
ReLU

activation, 81
Reset

environment. See Gym
Reset () method

custom environment class, 34
Retro

OpenAI, 91
Reward, 1–9, 12, 17
Reward (float)

custom environment class, 34
Reward function

reward, 3
RGB intensity

Convolutional Neural Network, 84
Richard Bellman

Bellman Equation, 21
rl4j, 93

reinforcement learning wrapper libraries, 93
RLlab. See Garage

reinforcement learning wrapper libraries, 92
RLlib

reinforcement learning wrapper libraries, 94
RMSProp

optimizers, deep learning, 83
Ronald J. Williams

REINFORCE algorithm, 133

S
Secondary reward

reward, 12

Sequence of convolutional maps
CNN, 14

Shared network architecture, 154
Sigmoid

activation, 79, 81
Soft updates

Deep Deterministic Policy Gradient, 180
Stochastic model

stochastic. See Probability Distribution
Skipping frames

Deep Q Network, 102
SoftMax

activation, 81
Solve an MDP problem

MDP, 29
Standardized training environments, 91
State, 7, 11, 15
State-Action-Reward-State-Action (SARSA),

51, 53, 54, 57–59, 63
‘model-free’ approach. See Classical RL
SARSA, 57

State transition probability, 20, 22
Step

environment. See Gym
Step () method

environment, 33
Stochastic events

stochastic, event, 20
Stochastic policy

policy, 132
Stride

pooling layer, 86
Structure for the code

grid-world, 34
Sub-Classing feature

TensorFlow, 153
SVM

function-approximators, 52
Synchronous Advantage Actor-Critic (A2C)

actor-critic, 150
Synchronous mode

value iteration. See Dynamic Programming

T
Tanh

activation, 79
TD target

Temporal Difference Learning, 55, 56
ToyText

OpenAI Gym, 92
Tau (s)

trajectory, 132
TD (0)

202 Index



Temporal Difference Learning. See TD
Lambda

TD (k)
Temporal Difference. See TD (0)
Temporal Difference Learning, 54, 56

Temporal Difference
model-based approach, 53

Temporal Difference (TD) Learning
classical RL, 51, 53, 55, 56, 58

Temporal Difference Model (TDM)
Temporal Difference Learning. See

Classical RL
TensorFlow

platform dependencies, 153
Terminal state

state, 29, 34
Test. See Deployment
Test our agents

deployment, 31, 32
Theorem

deterministic policy gradient, 176
Thought-process. See Intelligent-behavior
Tic-tac-toe

game, 8, 9, 11
Time adaptive “epsilon”

epsilon. See Epsilon-greedy
Training environment. See Deployment
Trajectory, 132
Transformations

pre-processing, 6, 14
TRFL

DeepMind, 93
reinforcement learning wrapper libraries, 93

U
Uncertain rewards

reward, 4
Utility

value, 15
Unidentifiability

Dueling DQN, 107

V
Validation. See Deployment
Value, 15–18
Value adaptive epsilon algorithms

epsilon, 62
Value Difference Based Exploration

value adaptive epsilon algorithms. See
VDBE

Value function . See Reward
Value iteration

dynamic programming, 19, 25, 26
grid-world, 35

Vanishing gradient
deep learning, 77, 79

VDBE
value adaptive epsilon algorithms, 62

Vision challenge
vision. See CNN

V(s)

value function, 15

W
Wrapper libraries

reinforcement learning wrapper libraries,
185

Y
ŷ , 77

Z
Z

artificial neurons, activation, 76

Index 203


	Preface
	Who This Book Is For?
	What This Book Covers?
	Contents
	About the Author
	1 Introduction to Reinforcement Learning
	Abstract
	1.1 What Is Artificial Intelligence and How Does Reinforcement Learning Relate to It?
	1.2 Understanding the Basic Design of Reinforcement Learning
	1.3 The Reward and the Challenges in Determining a Good Reward Function for Reinforcement LearningArtificial Intelligence
	1.3.1 Future Rewards
	1.3.2 Probabilistic/Uncertain Rewards
	1.3.3 Attribution of Rewards to Different Actions Taken in the Past
	1.3.4 Determining a Good Reward Function
	1.3.5 Dealing with Different Types of Reward
	1.3.6 Domain Aspects and Solutions to the Reward Problem

	1.4 The State in Reinforcement Learning
	1.4.1 Let Us Score a Triplet in Tic-Tac-Toe
	1.4.2 Let Us Balance a Pole on a CartCartPole (The CartPole Problem)
	1.4.2.1 State Enhancements for a Continuous-Action Agent for the CartPole Balancing Problem

	1.4.3 Let Us Help Mario Win the Princess
	1.4.3.1 A Quick Intro to the Vision-Related Reinforcement Learning Problems
	1.4.3.2 About the Mario Game
	1.4.3.3 The Vision ChallengeCNN While Playing Graphical GamesCNN
	1.4.3.4 Example of State Formulation for Graphical Games


	1.5 The Agent in Reinforcement Learning
	1.5.1 The Value FunctionReward
	1.5.2 The Action–Value/Q-FunctionAction–Value
	1.5.3 Explore Versus Exploit Dilemma
	1.5.4 The Policy and the On-Policy and Off-Policy Approaches

	1.6 Summary

	2 Mathematical and Algorithmic Understanding of Reinforcement Learning
	Abstract
	2.1 The Markov Decision Process (MDP)
	2.1.1 MDP Notations in Tuple Format
	2.1.2 MDP—Mathematical Objective

	2.2 The Bellman Equation
	2.2.1 Bellman Equation for Estimating the Value Function
	2.2.2 Bellman Equation for estimating the Action–Value/Q-function

	2.3 Dynamic ProgrammingBellman Equation and the Bellman Equation
	2.3.1 About Dynamic Programming
	2.3.2 Optimality for Application of Dynamic Programming to Solve Bellman Equation

	2.4 Value Iteration and Policy Iteration Methods
	2.4.1 Bellman Equation for Optimal Value Function and Optimal Policy
	2.4.2 Value Iteration and Synchronous and Asynchronous Update modes
	2.4.3 Policy Iteration and Policy Evaluation

	2.5 Summary

	3 Coding the Environment and MDP Solution
	Abstract
	3.1 The Grid-World Problem Example
	3.1.1 Understanding the Grid-World
	3.1.2 Permissible State TransitionsState Transition Probability in Grid-World

	3.2 Constructing the Environment
	3.2.1 Inheriting an Environment Class or Building a Custom Environment Class
	3.2.2 Recipes to Build Our Own Custom Environment ClassGym

	3.3 Platform Requirements and Project Structure for the Code
	3.4 Code for Creating the Grid-World Environment
	3.5 Code for the Value Iteration Approach of Solving the Grid-World
	3.6 Code for the Policy Iteration Approach of Solving the Grid-World
	3.7 Summary

	4 Temporal Difference Learning, SARSA, and Q-Learning
	Abstract
	4.1 Challenges with Classical DP
	4.2 Model-Based and Model-Free Approaches
	4.3 Temporal Difference (TD) Learning
	4.3.1 Estimation and Control Problems of Reinforcement Learning
	4.3.2 TD (0)TD Lambda
	4.3.3 TD (λ)TD (0) and Eligibility Trace

	4.4 SARSA
	4.5 Q-Learning
	4.6 Algorithms for Deciding Between the “Explore” and “Exploit” Probabilities (Bandit Algorithms)
	4.6.1 Epsilon-Greedy (ε-Greedyepsilon-greedy)
	4.6.2 Time Adaptive “epsilon”epsilon-greedy Algorithms (e.g., Annealing εTime Adaptive “epsilon”)
	4.6.3 Action Adaptive Epsilon Algorithms (e.g., Epsilon Soft)
	4.6.4 Value Adaptive Epsilon Algorithms (e.g., VDBE Based ε-Greedy)
	4.6.5 Which Bandit Algorithm Should We Use?

	4.7 Summary

	5 Q-Learning in Code
	Abstract
	5.1 Project Structure and Dependencies
	5.2 Code
	5.2.1 Imports and Logging (file Q_Lerning.py)
	5.2.2 Code for the Behavior Policy Class
	5.2.3 Code for the Q-Learning Agent’s Class
	5.2.4 Code for Testing the Agent Implementation (Main Function)
	5.2.5 Code for Custom Exceptions (File rl_exceptions.py)

	5.3 Training Statistics Plot

	6 Introduction to Deep Learning
	Abstract
	6.1 Artificial Neurons—The Building Blocks of Deep Learning
	6.2 Feed-Forward Deep Neural Networks (DNN)
	6.2.1 Feed-Forward Mechanism in Deep Neural Networks

	6.3 Architectural Considerations in Deep Learning
	6.3.1 Activation Functions in Deep Learning
	6.3.2 Loss Functions in Deep Learning
	6.3.3 Optimizers in Deep Learning

	6.4 Convolutional Neural Networks—Deep Learning for Vision
	6.4.1 Convolutional Layer
	6.4.2 Pooling Layer
	6.4.3 Flattened and Fully Connected Layers

	6.5 Summary

	7 Implementation Resources
	Abstract
	7.1 You Are not Alone!
	7.2 Standardized Training Environments and Platforms
	7.2.1 OpenAI Universe and Retro
	7.2.2 OpenAI Gym
	7.2.3 DeepMind Lab
	7.2.4 DeepMind Control Suite
	7.2.5 Project Malmo by Microsoft
	7.2.6 Garage

	7.3 Agent Development and Implementation Libraries
	7.3.1 DeepMind’s TRFL
	7.3.2 OpenAI Baselines
	7.3.3 Keras-RL
	7.3.4 Coach (By Nervana Systems)
	7.3.5 RLlib


	8 Deep Q Network (DQN), Double DQN, and Dueling DQN
	Abstract
	8.1 General Artificial Intelligence
	8.2 An Introduction to “Google Deep Mind” and “AlphaGoGoogle DeepMind”
	8.3 The DQN Algorithm
	8.3.1 Experience Replay
	8.3.1.1 Prioritized Experience Replay
	8.3.1.2 Skipping Frames

	8.3.2 Additional Target Q NetworkDeep Q Network
	8.3.3 Clipping Rewards and Penalties

	8.4 Double DQNDDQN
	8.5 Dueling DQN
	8.6 Summary

	9 Double DQN in Code
	Abstract
	9.1 Project Structure and Dependencies
	9.2 Code for the Double DQN Agent (File: DoubleDQN.py)
	9.2.1 Code for the Behavior Policy Class (File: behavior_policy.py)
	9.2.2 Code for the Experience Replay Memory Class (File: experience_replay.py)
	9.2.3 Code for the Custom Exceptions Classes (File: rl_exceptions.py)

	9.3 Training Statistics Plots

	10 Policy-Based Reinforcement Learning Approaches
	Abstract
	10.1 Introduction to Policy-Based Approaches and Policy Approximation
	10.2 Broad Difference Between Value-Based and Policy-Based Approaches
	10.3 Problems with Calculating the Policy Gradient
	10.4 The REINFORCE Algorithm
	10.4.1 Shortcomings of the REINFORCE Algorithm
	10.4.2 Pseudocode for the REINFORCE Algorithm

	10.5 Methods to Reduce Variance in the REINFORCE Algorithm
	10.5.1 Cumulative Future Reward-Based Attribution
	10.5.2 Discounted Cumulative Future Rewards
	10.5.3 REINFORCE with Baseline

	10.6 Choosing a Baseline for the REINFORCE Algorithm
	10.7 Summary

	11 Actor-Critic Models and the A3C
	Abstract
	11.1 Introduction to Actor-Critic Methods
	11.2 Conceptual Design of the Actor-Critic Method
	11.3 Architecture for the Actor-Critic Implementation
	11.3.1 Actor-Critic Method and the (Dueling) DQN
	11.3.2 Advantage Actor-Critic Model Architecture

	11.4 Asynchronous Advantage Actor-Critic Implementation (A3C)
	11.5 (Synchronous) Advantage Actor-Critic Implementation (A2C)
	11.6 Summary

	12 A3C in Code
	Abstract
	12.1 Project Structure and Dependencies
	12.2 Code (A3C_Master—File: a3c_master.py)
	12.2.1 A3C_Worker (File: a3c_worker.py)
	12.2.2 Actor-Critic (TensorFlow) Model (File: actorcritic_model.py)
	12.2.3 SimpleListBasedMemory (File: experience_replay.py)
	12.2.4 Custom Exceptions (rl_exceptions.py)

	12.3 Training Statistics Plots

	13 Deterministic Policy Gradient and the DDPG
	Abstract
	13.1 Deterministic Policy Gradient (DPG)
	13.1.1 Advantages of Deterministic Policy Gradient Over Stochastic Policy Gradient
	13.1.2 Deterministic Policy Gradient Theorem
	13.1.3 Off-Policy Deterministic Policy-Gradient-Based Actor-Critic

	13.2 Deep Deterministic Policy Gradient (DDPG)
	13.2.1 Deep Learning Implementation-Related Modifications in DDPG
	13.2.2 DDPG Algorithm Pseudo-Code

	13.3 Summary

	14 DDPG in Code
	Abstract
	14.1 High-Level Wrapper Libraries for Reinforcement Learning
	14.2 The Mountain Car Continuous (Gym) Environment
	14.3 Project Structure and Dependencies
	14.4 Code (File: ddpg_continout_action.py)
	14.5 Agent Playing the “MountainCarContinous-v0” Environment

	Bibliography
	Index



